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Delay Differential Eqns (DDEs) vs Ordinary Differential Eqns (ODEs)

ẋ(t) = f(t, x(t), x(t− τ)) vs ẋ(t) = f(t, x(t))

or

ẋ(t) = f(t, x|[t−τ,t]
) vs ẋ(t) = f(t, x(t))

τ > 0 time delay or memory of the system
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Delay Differential Eqns (DDEs) vs Ordinary Differential Eqns (ODEs)

ẋ(t) = f(t, x(t), x(t− τ)) vs ẋ(t) = f(t, x(t))

or

ẋ(t) = f(t, x|[t−τ,t]
) vs ẋ(t) = f(t, x(t))

τ > 0 time delay or memory of the system

Time-delays:

⋆ maturation period of a biological species

⋆ hunting delay in predator-prey systems

⋆ incubation time in epidemic models

⋆ synaptic transmission time among neurons

⋆ maturation time of blood cells

⋆ “splitting” delay of cell organisms in chemostat models

⋆ delays in control systems, number theory, stochastic models, mechanical

engineering, ...
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τ > 0 time delay

”Initial data” at a time t0: past history of the system over the interval [t0− τ, t0].

Phase Space: C := C([−τ, 0];Rn), ‖ϕ‖ = max−τ≤θ≤0 |ϕ(θ)|
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Phase Space: C := C([−τ, 0];Rn), ‖ϕ‖ = max−τ≤θ≤0 |ϕ(θ)|

Standard notation:

xt ∈ C, xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0

DDE in C : ẋ(t) = f(t, xt)
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τ > 0 time delay

”Initial data” at a time t0: past history of the system over the interval [t0− τ, t0].

Phase Space: C := C([−τ, 0];Rn), ‖ϕ‖ = max−τ≤θ≤0 |ϕ(θ)|

Standard notation:

xt ∈ C, xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0

DDE in C : ẋ(t) = f(t, xt)

Initial Condition at e.g. t0 = 0: x(θ) = ϕ(θ), −τ ≤ θ ≤ 0
i.e., x0 = x|[−τ,0]

= ϕ, ϕ ∈ C
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Some basic population models:

n = 1:

Delayed Logistic Eq.

Ṅ(t) = rN(t)
[

1−N(t− τ)/K
]

(one discrete delay)

Ṅ(t) = rN(t)
[

1−a1N(t− τ1)−· · ·−anN(t− τn)
]

(n discrete delays)

Ṅ(t) = rN(t)
(

1− 1
K

∫ 0
−τ
k(θ)N(t+ θ) dθ

)

(distributed delay)
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Some basic population models:

n = 1:

Delayed Logistic Eq.

Ṅ(t) = rN(t)
[

1−N(t− τ)/K
]

(one discrete delay)

Ṅ(t) = rN(t)
[

1−a1N(t− τ1)−· · ·−anN(t− τn)
]

(n discrete delays)

Ṅ(t) = rN(t)
(

1− 1
K

∫ 0
−τ
k(θ)N(t+ θ) dθ

)

(distributed delay)

n > 1
Kolmogorov-type n-dimensional population models:

ẋi(t) = xi(t)fi(t, xt), 1 ≤ i ≤ n

As a particular case, LV models:

ẋi(t) = xi(t)[bi(t)− gi(t, xt)], 1 ≤ i ≤ n



6

infinite delay

Systems with infinite memory: Volterra’s population models

Typically the “memory functions” appear as integral kernels:

e.g., consider the predator-prey model

ẋ(t) = x(t)[a− bx(t)− cy(t)−

∫ ∞

0

k1(s)x(t− s)ds−

∫ ∞

0

k2(s)y(t− s)ds]

ẏ(t) = y(t)[−d+ px(t)− qy(t) +

∫ ∞

0

k3(s)x(t− s)ds−

∫ ∞

0

k4(s)y(t− s)ds]

a, b, c, d, p, q > 0
ki(s) ≥ 0 continuous, ki ∈ L1[0,∞)

(the delay effects diminish gradually when going back in time)
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Systems with infinite memory: Volterra’s population models

Typically the “memory functions” appear as integral kernels:

e.g., consider the predator-prey model

ẋ(t) = x(t)[a− bx(t)− cy(t)−

∫ ∞

0

k1(s)x(t− s)ds−

∫ ∞

0

k2(s)y(t− s)ds]

ẏ(t) = y(t)[−d+ px(t)− qy(t) +

∫ ∞

0

k3(s)x(t− s)ds−

∫ ∞

0

k4(s)y(t− s)ds]

a, b, c, d, p, q > 0
ki(s) ≥ 0 continuous, ki ∈ L1[0,∞)

(the delay effects diminish gradually when going back in time)

IC at t = 0:

x(s) = φ(s), s ≤ 0, i.e., x|(−∞,0] = φ ∈ C((−∞, 0];Rn)



Initial conditions
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C+ = C([−τ, 0];Rn
+)

Initial conditions: For our results, initial conditions are taken in C+ or in

C0 = {ϕ ∈ C+ : ϕ(0) > 0}.

C0 is an admissible set of IC: ϕ ∈ C0 ⇒ xt(·; t0, ϕ) ∈ C0



Standard definitions:
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In a set S ⊂ C+ \ {0} of IC:

• An equilibrium x∗ ≥ 0 of ẋ = f(t, xt) is globally attractive (GA) if

lim
t→∞

x(t, ϕ) = x∗ ∀ϕ ∈ S

• An equilibrium x∗ ≥ 0 of ẋ = f(t, xt) is globally asymptotically stable

(GAS) if it is stable and globally attractive
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In a set S ⊂ C+ \ {0} of IC:

• An equilibrium x∗ ≥ 0 of ẋ = f(t, xt) is globally attractive (GA) if

lim
t→∞

x(t, ϕ) = x∗ ∀ϕ ∈ S

• An equilibrium x∗ ≥ 0 of ẋ = f(t, xt) is globally asymptotically stable

(GAS) if it is stable and globally attractive

• ẋ = f(t, xt) is persistent (respec. uniformly persistent) if

lim inf
t→∞

xi(t, ϕ) > 0 (respec. ≥ m0 > 0) ∀i, ϕ ∈ S

• ẋ = f(t, xt) is permanent if ∃m,M > 0:

m ≤ lim inf
t→∞

xi(t, ϕ) ≤ lim sup
t→∞

xi(t, ϕ) ≤M, 1 ≤ i ≤ n, ϕ ∈ S



Cooperative Systems:
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• ẋ = f(t, xt) is cooperative if f = (f1, . . . , fn) satisfies Smith’s1

quasi-monotonicity condition:

ϕ, ψ ∈ C+, ϕ ≤ ψ andϕi(0) = ψi(0) ⇒ fi(t, ϕ) ≤ fi(t, ψ), ∀t ≥ 0, 1 ≤ i ≤ n
(Q)
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• ẋ = f(t, xt) is cooperative if f = (f1, . . . , fn) satisfies Smith’s1

quasi-monotonicity condition:

ϕ, ψ ∈ C+, ϕ ≤ ψ andϕi(0) = ψi(0) ⇒ fi(t, ϕ) ≤ fi(t, ψ), ∀t ≥ 0, 1 ≤ i ≤ n
(Q)

• for autonomous DDEs, (Q) ⇒ the semiflow is monotone

• comparison of solutions: consider two DDEs

x′(t) = f(t, xt) and x′(t) = g(t, xt)

and assume that either f or g satisfies (Q). If f ≤ g, then

x(t; t0, ϕ; f) ≤ x(t; t0, ϕ; g).

1
H. Smith: book on Monotone Dynamical systems, AMS 1995; SIAM J Math Anal (1986)



2. Cooperative scalar DDEs
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Goal:

1. To develop a method to establish the permanence for a large class of

non-autonomous cooperative scalar DDEs (answering some open

problems..), along the following lines:

⋆ Compare (below and above) the positive solutions of the DDE with solutions

of two DDEs with globally attractive equilibria

⋆⇒ permanence of the DDE

⋆ Use the a priori knowledge of permanence to further improve uniform lower

and upper bounds
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Goal:

1. To develop a method to establish the permanence for a large class of

non-autonomous cooperative scalar DDEs (answering some open

problems..), along the following lines:

⋆ Compare (below and above) the positive solutions of the DDE with solutions

of two DDEs with globally attractive equilibria

⋆⇒ permanence of the DDE

⋆ Use the a priori knowledge of permanence to further improve uniform lower

and upper bounds

2. To carry out this method to study (a class of) non-autonomous cooperative

n-dim DDEs
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For a large family of cooperative scalar DDEs, the global attractivity (or GAS)

of a positive equilibrium is established
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For a large family of cooperative scalar DDEs, the global attractivity (or GAS)

of a positive equilibrium is established

• cooperative scalar model with autonomous coefficients:

ẋ(t) = R
(

x(t− τ1(t)), . . . , x(t− τm(t))
)

−D(x(t)) (1)

τk : [0,∞) → R continuous, 0 ≤ τk(t) ≤ τ for some τ > 0
R : Rm

+ := [0,∞)m → [0,∞), D : [0,∞) → [0,∞) smooth (∃ ! of

solutions for t ≥ 0), R(0, . . . , 0) = 0 (not essential), D(0) = 0.



Step 1

11

For a large family of cooperative scalar DDEs, the global attractivity (or GAS)

of a positive equilibrium is established

• cooperative scalar model with autonomous coefficients:

ẋ(t) = R
(

x(t− τ1(t)), . . . , x(t− τm(t))
)

−D(x(t)) (1)

τk : [0,∞) → R continuous, 0 ≤ τk(t) ≤ τ for some τ > 0
R : Rm

+ := [0,∞)m → [0,∞), D : [0,∞) → [0,∞) smooth (∃ ! of

solutions for t ≥ 0), R(0, . . . , 0) = 0 (not essential), D(0) = 0.

(A1) R(y1, . . . , ym) is nondecreasing in yk ≥ 0, ∀k
(A2) there exists K ≥ 0 such that

(x−K)(R(x, . . . , x)−D(x)) < 0 for x > 0, x 6= K.
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With K = 0 in (A2), 0 is the unique equilibrium; otherwise, 0,K are equilibria.

K

R(x, . . . , x)
D(x)
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With K = 0 in (A2), 0 is the unique equilibrium; otherwise, 0,K are equilibria.

K

R(x, . . . , x)
D(x)

Theorem 1. Assume (A1)–(A2).

Then K is globally asymptotically stable (GAS), in the set of solutions with IC in

C0 := {ϕ ∈ C+ : ϕ(0) > 0}.
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With K = 0 in (A2), 0 is the unique equilibrium; otherwise, 0,K are equilibria.

K

R(x, . . . , x)
D(x)

Theorem 1. Assume (A1)–(A2).

Then K is globally asymptotically stable (GAS), in the set of solutions with IC in

C0 := {ϕ ∈ C+ : ϕ(0) > 0}.

(K = 0: extinction; vs with K > 0: K is GAS)

Remark.

For the autonomous case: related results in Kuang’s monograph on DDEs; with

simple delay in Arino et al. (2006): ẋ(t) = R(x(t− τ ))−D(x(t)), t ≥ 0.



Step 2: scalar DDEs with non-autonomous coefficients
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Theorem 2. Consider

ẋ(t) = R
(

t, x(t− τ1(t)), . . . , x(t− τm(t))
)

−D(t, x(t)), t ≥ 0, (2)

with R(t, y), D(t, x), τk(t) continuous, 0 ≤ τk(t) ≤ τ , for t, x ≥ 0, y ∈ R
m
+
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Theorem 2. Consider

ẋ(t) = R
(

t, x(t− τ1(t)), . . . , x(t− τm(t))
)

−D(t, x(t)), t ≥ 0, (2)

with R(t, y), D(t, x), τk(t) continuous, 0 ≤ τk(t) ≤ τ , for t, x ≥ 0, y ∈ R
m
+

Assume that:

(H) there are (locally Lipschitz) continuous functions

Rl, Ru : Rm
+ → R+, D

l, Du : R+ → R+ with

Rl(0, . . . , 0) = Ru(0, . . . , 0) = Dl(0) = Du(0) = 0, such that:

Rl(y) ≤ R(t, y) ≤ Ru(y)

Dl(x) ≤ D(t, x) ≤ Du(x), t ≥ 0, y ∈ R
m
+ , x ≥ 0

and the pairs (Ru, Dl), (Rl, Du) satisfy (A1)-(A2) with K = Ku,K l > 0,

respec. THEN, (2) is permanent (in C0): in fact, all positive sol. x(t) satisfy

K l ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤ Ku.
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ẋ(t) = R
(

t, x(t− τ1(t)), . . . , x(t− τm(t))
)

−D(t, x(t)), t ≥ 0, (2)

A very simple argument: A solution x(t) of (2) satisfies the inequalities

Rl
(

x(t− τ1(t)), . . . , x(t− τm(t))
)

−Du(x(t)) ≤ ẋ(t) and

ẋ(t) ≤ Ru
(

x(t− τ1(t)), . . . , x(t− τm(t))
)

−Dl(x(t))

We compare the solutions x(t;ϕ) (ϕ ∈ C0) of (2) with the solutions of the two

auxiliary cooperative DDEs:

v̇(t) = Rl
(

v(t− τ1(t)), . . . , v(t− τm(t))
)

−Du(v(t)) (2l)

u̇(t) = Ru
(

u(t− τ1(t)), . . . , u(t− τm(t))
)

−Dl(u(t)) (2u)
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For (2l):

Kl

Rl(x, . . . , x)
Du(x)

For (2u):

Ku

Ru(x, . . . , x)
Dl(x)
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For (2l):

Kl

Rl(x, . . . , x)
Du(x)

For (2u):

Ku

Ru(x, . . . , x)
Dl(x)

Kl

We get

v(t;ϕ) ≤ x(t;ϕ) ≤ u(t;ϕ), t ≥ 0,

and Theorem 1 implies that v(t;ϕ) → K l, u(t;ϕ) → Ku as t→ ∞.
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Particular case: R(t, y1, . . . , ym) =
∑m

k=1 ykrk(t, yk), D(t, x) = xd(t, x):

ẋ(t) =
m
∑

k=1

x(t− τk(t))rk
(

t, x(t− τk(t))
)

− x(t)d
(

t, x(t)
)

(3)

with rk(t, y), d(t, x), τk(t) continuous, 0 ≤ τk(t) ≤ τ, 1 ≤ k ≤ m

Note that R(t, x, . . . , x)−D(t, x) = x
(

∑m

k=1 rk(t, x)− d(t, x)
)

.
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Particular case: R(t, y1, . . . , ym) =
∑m

k=1 ykrk(t, yk), D(t, x) = xd(t, x):

ẋ(t) =
m
∑

k=1

x(t− τk(t))rk
(

t, x(t− τk(t))
)

− x(t)d
(

t, x(t)
)

(3)

with rk(t, y), d(t, x), τk(t) continuous, 0 ≤ τk(t) ≤ τ, 1 ≤ k ≤ m

Note that R(t, x, . . . , x)−D(t, x) = x
(

∑m

k=1 rk(t, x)− d(t, x)
)

.

Corollary: Permanence IF there are continuous fcs. rlk, r
u
k , d

l, du ≥ 0 such

that with ru(x) =
m
∑

k=1

rk(x), r
l(x) =

m
∑

k=1

rlk(x) we have:

(i) rl(x) ≤
∑m

k=1 rk(t, x) ≤ ru(x), dl(x) ≤ d(t, x) ≤ du(x), t ≥ 0, x ≥ 0

(ii) xrlk(x), xr
u
k(x) nondecreasing

(iii) the functions ru(x)− dl(x) and rl(x)− du(x) are (strictly) decreasing on

[0,∞)

(iv) rl(0)− du(0) > 0 and ru(∞)− dl(∞) < 0.



3. Aplications
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Example 1. A delayed logistic model:

ẋ(t) =
m
∑

k=1

αk(t)x(t− τk(t))

1 + βk(t)x(t− τk(t))
− µ(t)x(t)− κ(t)x2(t) (L)
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Example 1. A delayed logistic model:

ẋ(t) =
m
∑

k=1

αk(t)x(t− τk(t))

1 + βk(t)x(t− τk(t))
− µ(t)x(t)− κ(t)x2(t) (L)

• Classic logistic ODE: N ′(t) = rN(t)
[

1− N(t)
K

]

K

K
2

• Classic logistic DDE (Hutchinson, 1948):

N ′(t) = rN(t)
[

1−
N(t− τ)

K

]

(H)

r is the intrinsic growth rate, K is the carrying capacity, N(t) is the adult

population size at time t, τ is the maturation delay



Wright’s equation

18

• With y(t) = −1 +N(τt)/K and α = τr , (H) becomes

y′(t) = −αy(t− 1)[1 + y(t)] (W )

Thm [Wright,1955]

• if 0 < α < π/2, then the y = 0 is a LAS solution of (W)

• if α > π/2: y = 0 is unstable

• if 0 < α ≤ 3/2, limt→∞ y(t) = 0, for all solutions y(t) of (W) with IC with

y(0) > −1, i.e., the steady solution N(t) ≡ K of (H) is globally attractive in

the set of its positive solutions.
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• With y(t) = −1 +N(τt)/K and α = τr , (H) becomes

y′(t) = −αy(t− 1)[1 + y(t)] (W )

Thm [Wright,1955]

• if 0 < α < π/2, then the y = 0 is a LAS solution of (W)

• if α > π/2: y = 0 is unstable

• if 0 < α ≤ 3/2, limt→∞ y(t) = 0, for all solutions y(t) of (W) with IC with

y(0) > −1, i.e., the steady solution N(t) ≡ K of (H) is globally attractive in

the set of its positive solutions.

Hopf bifurcation:

Moreover, for α = π/2 (i.e., delay τ = π
2r ) there is a supercritical Hopf

bifurcation, with stable periodic solutions
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Historical notes:

1. Hutchinson’s equation (H) proved to be an excellent model for the growth of some

species populations
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Historical notes:

1. Hutchinson’s equation (H) proved to be an excellent model for the growth of some

species populations

2. Wright’s interest on the retarded equation (W) was initially motivated by its

application to results on the distribution of prime numbers, when he tried to give an

alternative proof (to Hadamard and de la Vallé Poussin’s proofs in 1896) of the Prime

Number Theorem.
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Historical notes:

1. Hutchinson’s equation (H) proved to be an excellent model for the growth of some

species populations

2. Wright’s interest on the retarded equation (W) was initially motivated by its

application to results on the distribution of prime numbers, when he tried to give an

alternative proof (to Hadamard and de la Vallé Poussin’s proofs in 1896) of the Prime

Number Theorem.

3. Wrigh’s conjecture (1955), still open:

LAS stability implies GA

i.e. is the global attractivity true for 0 < α < π/2?

4. The introduction of delays in differential equations goes back to Volterra’s works in

the 1920’s and 30’s, on biological growth models. To represent the incubation time of a

parasite, Volterra proposed the following logistic model with distributed (possibly

infinite) delay (see also Miller (1965)):

ẋ(t) = x(t)
(

a− bx(t)−

∫ t

c

f(t− s)x(s) ds
)

,

where c = 0 or c = −∞, a, b > 0 and f(x) ≥ 0, f ∈ L1[0,∞) is the memory func.



’Alternative’ delayed logistic equation :

20

In J. Arino, L. Wang, G. Wolkowicz, JTB (2006):

• ’alternative’ logistic DDE:

N ′(t) =
γµN(t− τ)

µeµτ +K(eµτ − 1)N(t− τ)
− µN(t)− κN2(t) (ℓ)
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In J. Arino, L. Wang, G. Wolkowicz, JTB (2006):

• ’alternative’ logistic DDE:

N ′(t) =
γµN(t− τ)

µeµτ +K(eµτ − 1)N(t− τ)
− µN(t)− κN2(t) (ℓ)

• non-autonomous version of the alternative logistic eq. (after a scaling):

N ′(t) =
α(t)N(t− τ(t))

1 + β(t)N(t− τ(t))
− µ(t)N(t)− κ(t)N2(t)

• generalization with multiple delays:

ẋ(t) =
m
∑

k=1

αk(t)x(t− τk(t))

1 + βk(t)x(t− τk(t))
− µ(t)x(t)− κ(t)x2(t) (L)
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⋆ N ′(t) depends on growth (+), death (−), intraspecific competition (−) rates
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21

Starting point: N ′(t) = (γ − µ)N(t)− κN2(t) (1)

⋆ N ′(t) depends on growth (+), death (−), intraspecific competition (−) rates

Now:

τ > 0 maturation delay

⋆ keep death and intraspecific competition rates instantaneous

⋆ death rate is linear and competition rate is quadratic

⋆ at time t, the growth (not birth) rate depends on the population size at t− τ

N ′(t) = g(N(t− τ ))− µN(t)− κN2(t)

⋆ at time t, the growth rate is proportional to the number of individuals at time

t− τ that have survived until time t;
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21

Starting point: N ′(t) = (γ − µ)N(t)− κN2(t) (1)

⋆ N ′(t) depends on growth (+), death (−), intraspecific competition (−) rates

Now:

τ > 0 maturation delay

⋆ keep death and intraspecific competition rates instantaneous

⋆ death rate is linear and competition rate is quadratic

⋆ at time t, the growth (not birth) rate depends on the population size at t− τ

N ′(t) = g(N(t− τ ))− µN(t)− κN2(t)

⋆ at time t, the growth rate is proportional to the number of individuals at time

t− τ that have survived until time t; to find the growth rate, one solves the

ODE N ′(t) = −µN(t)− κN2(t), and obtains γN(t) replaced by
γµN(t−τ)

µeµτ+K(eµτ−1)N(t−τ) ; inserting in (1),

N ′(t) =
γµN(t− τ )

µeµτ +K(eµτ − 1)N(t− τ )
− µN(t)− κN2(t) (ℓ)



Generalization of the ‘alternative’ logistic DDE:
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• generalization with multiple delays:

ẋ(t) =
m
∑

k=1

αk(t)x(t− τk(t))

1 + βk(t)x(t− τk(t))
− µ(t)x(t)− κ(t)x2(t) (L)

αk, κ : [0,∞) → (0,∞) continuous, bounded below and above by positive

constants, µ, βk, τk : [0,∞) → [0,∞) continuous and bounded, 1 ≤ k ≤ m
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• generalization with multiple delays:

ẋ(t) =
m
∑

k=1

αk(t)x(t− τk(t))

1 + βk(t)x(t− τk(t))
− µ(t)x(t)− κ(t)x2(t) (L)

αk, κ : [0,∞) → (0,∞) continuous, bounded below and above by positive

constants, µ, βk, τk : [0,∞) → [0,∞) continuous and bounded, 1 ≤ k ≤ m

Theorem 3. If
m
∑

k=1

inf
t≥0

αk(t) > sup
t≥0

µ(t) , (∗)

equation (L) is permanent. Moreover, all solutions x(t) = x(t;ϕ) (ϕ ∈ C0)
of (L) satisfy the uniform estimates

m ≤ lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) ≤M, where

M = lim sup
t→∞

1

κ(t)

(

m
∑

k=1

αk(t)− µ(t)

)

,m = lim inf
t→∞

1

κ(t)

(

m
∑

k=1

αk(t)

1 + βk(t)M
− µ(t)

)
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Sketch of proof.

(L) has the form (3), with rk(t, x) =
αk(t)

1+βk(t)x
, d(t, x) = µ(t) + κ(t)x
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Sketch of proof.

(L) has the form (3), with rk(t, x) =
αk(t)

1+βk(t)x
, d(t, x) = µ(t) + κ(t)x

Notation: f = inft≥0 f(t), f = supt≥0 f(t)

• Claim 1: Permanence

It follows by the Corollary of Theorem 2:

with du(x) = µ+ kx, dl(x) = µ+ kx and

ruk (x) =
αk

1 + βkx
, rlk(x) =

αk

1 + βkx
for x ≥ 0, k = 1, . . . ,m.

we have xruk (x), xr
l
k(x) ր,

∑

k r
u
k − dl,

∑

k r
l
k − du ց on [0,∞) with

∑

k

ruk (∞)− dl(∞) = −∞ < 0,
∑

k

rlk(0)− du(0) > 0 (condition (∗))
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• Claim 2: x := lim supt→∞ x(t) ≤M
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• Claim 2: x := lim supt→∞ x(t) ≤M

⋆ By Claim 1, 0 < x <∞

⋆ take tn → ∞, and ẋ(tn) → 0 and x(tn) → x

⋆ NOW, we use the equation: fix any ε > 0 small; ∃T > 0 : x(t− τ) ≤ x+ ε
for t ≥ T0; for n large,

ẋ(tn) = k(tn)

[

1

k(tn)

(

m
∑

k=1

αk(tn)x(tn − τk(tn))

1 + βk(tn)x(tn − τk(tn))
− µ(tn)x(tn)

)

− x2(tn)

]

≤ k(tn)

[

1

k(tn)

(

m
∑

k=1

αk(tn)(x+ ε)

1 + βk(tn)(x+ ε)
− µ(tn)x(tn)

)

− x2(tn)

]

≤ k(tn)x

[

1

k(tn)

(

m
∑

k=1

αk(tn)− µ(tn)

)

− x(tn)

]

+O(ε)
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• Claim 2: x := lim supt→∞ x(t) ≤M

⋆ By Claim 1, 0 < x <∞

⋆ take tn → ∞, and ẋ(tn) → 0 and x(tn) → x

⋆ NOW, we use the equation: fix any ε > 0 small; ∃T > 0 : x(t− τ) ≤ x+ ε
for t ≥ T0; for n large,

ẋ(tn) = k(tn)

[

1

k(tn)

(

m
∑

k=1

αk(tn)x(tn − τk(tn))

1 + βk(tn)x(tn − τk(tn))
− µ(tn)x(tn)

)

− x2(tn)

]

≤ k(tn)

[

1

k(tn)

(

m
∑

k=1

αk(tn)(x+ ε)

1 + βk(tn)(x+ ε)
− µ(tn)x(tn)

)

− x2(tn)

]

≤ k(tn)x

[

1

k(tn)

(

m
∑

k=1

αk(tn)− µ(tn)

)

− x(tn)

]

+O(ε)

⋆ n→ ∞, ε→ 0+:

0 ≤ lim sup
t→∞

[

1

k(tn)

(

m
∑

k=1

αk(tn)− µ(tn)

)

− x(tn)

]

, thus

x ≤ lim supt→∞
1

k(t) (
∑m

k=1 αk(t)− µ(t)) =M.
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• Claim 3: x := lim inft→∞ x(t) ≥ m

⋆ take sn → ∞, and ẋ(sn) → 0 and x(sn) → x, etc.:

analogous procedure, where in addition the already established upper bound

M is used.



Example 2: A non-autonomous Nicholson’s equation

26

• Nicholson’s eq with multiple discrete delays:

ẋ(t) = −d(t)x(t) +
m
∑

k=1

βk(t)x(t− τk(t))e
−x(t−τk(t)) (N)

βk, τk, d : [0,∞) → [0,∞) are continuous, bounded and nonnegative.



Example 2: A non-autonomous Nicholson’s equation

26

• Nicholson’s eq with multiple discrete delays:

ẋ(t) = −d(t)x(t) +
m
∑

k=1

βk(t)x(t− τk(t))e
−x(t−τk(t)) (N)

βk, τk, d : [0,∞) → [0,∞) are continuous, bounded and nonnegative.

Remark.

We could consider more general models with distributed delay: e.g.,

ẋ(t) = −d(t)x(t) + β(t)

∫ 0

−τ(t)

x(t+ s)e−x(t+s) ds
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Historical notes:

Sheep pest and Nicholson’s data:

In the 1950’s, Alexander J. Nicholson carried out a series of experiments to study a

sheep pest, the blowfly. The flies were kept in several cages in laboratory, and

observations made for several years. Nicholson’s data were collected in a series of

publications, namely in his celebrated paper

• A. J. Nicholson, An outline of the dynamics of animal populations. Austral. J. Zool.

(1954)
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Historical notes:

Sheep pest and Nicholson’s data:

In the 1950’s, Alexander J. Nicholson carried out a series of experiments to study a

sheep pest, the blowfly. The flies were kept in several cages in laboratory, and

observations made for several years. Nicholson’s data were collected in a series of

publications, namely in his celebrated paper

• A. J. Nicholson, An outline of the dynamics of animal populations. Austral. J. Zool.

(1954)

Lucilia Cuprina (Australian sheep blowfly)

• 4 stages of growth: eggs, larvae, pupae, and adults

• It’s known as the Australian sheep blowfly, but Lucilia cuprina is a worldwide sheep

pest (mostly in dry climates).

• It causes cutaneous myiasis (i.e., infestation of the body by the larvae of flies), which

leads to death when left untreated. A female fly locates a sheep with an open wound in

which she lays her eggs; the maggots of L. cuprina rapidly grow while eating the living

flesh of the sheep, poisoning the sheep.

• It is a serious problem in the animal industry, in spite of several forms of prevention

(regular inspections during the fly season, insecticides, fly traps...)
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Modelling:

In the 1970’s, May revisited Nicholson’s data and a new interest in Nicholson’s

studies emerged (papers by May and May & Oster in the ’70s)
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Modelling:

In the 1970’s, May revisited Nicholson’s data and a new interest in Nicholson’s

studies emerged (papers by May and May & Oster in the ’70s)

• A mathematical model for the sheep-blowfly population:

Gurney, Blythe and Nisbet, Nicholson’s blowflies revisited. Nature (1980):

x′(t) = −dx(t) + βx(t− τ)e−ax(t−τ)

where d, β, a > 0, time-delay τ > 0
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Modelling:

In the 1970’s, May revisited Nicholson’s data and a new interest in Nicholson’s

studies emerged (papers by May and May & Oster in the ’70s)

• A mathematical model for the sheep-blowfly population:

Gurney, Blythe and Nisbet, Nicholson’s blowflies revisited. Nature (1980):

x′(t) = −dx(t) + βx(t− τ)e−ax(t−τ)

where d, β, a > 0, time-delay τ > 0

Here:

x(t) size of (adult) blowfly population, d adult mortality, β maximal egg

production rate, 1/a size at which the population produces eggs at max rate,

τ generation time (from egg to the final adult form)



Nicholson’s blowflies equation:

31

For the original equation:

x′(t) = −dx(t) + βx(t− τ)e−ax(t−τ)

d, β, a > 0, time-delay τ > 0



Nicholson’s blowflies equation:
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For the original equation:

x′(t) = −dx(t) + βx(t− τ)e−ax(t−τ)

d, β, a > 0, time-delay τ > 0

With a = 1 (after scaling), the equilibria are given by

−dx+ βxe−x = 0
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equilibria: 0 and K = ln(β/d) positive equilibrium if β/d > 1
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• β/d ≤ 1: 0 is a global attractor (extinction)



Nicholson’s blowflies equation:

31

For the original equation:

x′(t) = −dx(t) + βx(t− τ)e−ax(t−τ)

d, β, a > 0, time-delay τ > 0

With a = 1 (after scaling), the equilibria are given by

−dx+ βxe−x = 0

equilibria: 0 and K = ln(β/d) positive equilibrium if β/d > 1

• β/d ≤ 1: 0 is a global attractor (extinction)

• If 1 < β/d ≤ e2, K = ln(β/d) is GAS for all delays τ > 0.

• If β/d > e2, K is GAS if τ < τ∗; ∃τ∗∗ ≥ τ∗, at τ∗∗ a Hopf bif occurs
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ẋ(t) = −d(t)x(t) +
m
∑

k=1

βk(t)x(t− τk(t))e
−x(t−τk(t)) (N)
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ẋ(t) = −d(t)x(t) +
m
∑

k=1

βk(t)x(t− τk(t))e
−x(t−τk(t)) (N)

Using Thm 2 and similar techniques to the ones above:

Theorem. Define

β
k
= inft≥0 βk(t), βk = supt≥0 βk(t), d = inft≥0 d(t), d = supt≥0 d(t), and

assume

d <
m
∑

k=1

β
k
≤

m
∑

k=1

βk < ed. (∗)

Then, (N) is permanent and any positive solution satisfies







lim supt→∞ x(t) ≤M := lim supt→∞ log
(

1
d(t)

∑m

k=1 βk(t)
)

lim inft→∞ x(t) ≥ m := lim inft→∞ log
(

1
d(t)

∑m

k=1 βk(t)
)

.
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ẋ(t) = −d(t)x(t) +
m
∑

k=1

βk(t)x(t− τk(t))e
−x(t−τk(t)) (N)

Using Thm 2 and similar techniques to the ones above:

Theorem. Define

β
k
= inft≥0 βk(t), βk = supt≥0 βk(t), d = inft≥0 d(t), d = supt≥0 d(t), and

assume

d <
m
∑

k=1

β
k
≤

m
∑

k=1

βk < ed. (∗)

Then, (N) is permanent and any positive solution satisfies







lim supt→∞ x(t) ≤M := lim supt→∞ log
(

1
d(t)

∑m

k=1 βk(t)
)

lim inft→∞ x(t) ≥ m := lim inft→∞ log
(

1
d(t)

∑m

k=1 βk(t)
)

.

Note. For the autonomous case with multiple delays, d = d, β = β =
∑

k βk:

it is known that β ≤ e2d ⇒ the positive equilibrium K = ln(β/d) is GA.



4. n-dimensional cooperative DDEs

33

4.1. Autonomous DDEs:

x′i(t) = Fi(xt)− xi(t)Gi(xt) =: fi(xt), i = 1, . . . , n, (4)

F = (F1, . . . , Fn), G = (G1, . . . , Gn) : C → R
n continuous and bdd on

bdd sets, Fi(0) ≥ 0

IC: x0 = ϕ with ϕ ∈ C0
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4.1. Autonomous DDEs:

x′i(t) = Fi(xt)− xi(t)Gi(xt) =: fi(xt), i = 1, . . . , n, (4)

F = (F1, . . . , Fn), G = (G1, . . . , Gn) : C → R
n continuous and bdd on

bdd sets, Fi(0) ≥ 0

IC: x0 = ϕ with ϕ ∈ C0

(A1) F and −G satisfy the quasimonotone condition (Q)

(A2) there is v ∈ R
n, v > 0 such that f(εv) > 0 for 0 < ε≪ 1

(A3) there is q ∈ R
n, q > 0 such that f(Lq) < 0 for L≫ 1

Recall that (A1) means that (4) is cooperative!

ϕ, ψ ∈ C+, ϕ ≤ ψ andϕi(0) = ψi(0) ⇒ fi(t, ϕ) ≤ fi(t, ψ), ∀t ≥ 0, 1 ≤ i ≤ n
(Q)
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• IF F is sublinear in R
n
+, i.e.,

for x ∈ R
n
+ and α ∈ (0, 1), F (αx) ≥ αF (x) 2

(A2) there exists a vector v ∈ R
n
+ such that F (v)−Bv > 0, where

B = diag (G1(0), . . . , Gn(0));
(A3) there exists a vector q = (q1, . . . , qn) ∈ R

n
+ such that

Fi(q)− qiGi(Lq) < 0 for L ≥ 1, i = 1, . . . , n.

2
Note that fi(cv) = Fi(cv)− cviGi(cv), 1 ≤ i ≤ n for v = (v1, . . . , vn) ∈ R

n, c ∈ R
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Theorem 4. Under (A1)-(A3), (4) is permanent.
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Theorem 4. Under (A1)-(A3), (4) is permanent.

Ideas for proof.

⋆ by (A1) (4) is cooperative, so we apply the theory of monotone dynamical systems:

⋆ by (A3), for ϕ ∈ C0 with ϕ ≤ Lq (L > 0 large) and f(Lq) < 0

x(t;ϕ) ≤ x(t;Lq) ց y∗

with y∗ = y∗(L) ≥ 0 equilibrium, thus all positive sol. are bounded

⋆ by (A2), for ϕ ∈ intC+ with ϕ ≥ εv (ε > 0 small), and f(εv) > 0

x(t;ϕ) ≥ x(t; εv) ր x∗

with x∗ = x∗(ε) > 0 equilibrium, thus (4) is persistent in intC+ (thus in C0)

⋆ more technical: one proves that the equilibria x∗(ε), y∗(L) do not depend on

ε ∈ (0, ε0), L ∈ (L0,∞) respec.

x∗ ≤ lim inf
t→∞

x(t;ϕ) ≤ lim sup
t→∞

x(t;ϕ) ≤ y∗.
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Theorem 4. Under (A1)-(A3), (4) is permanent.

Ideas for proof.

⋆ by (A1) (4) is cooperative, so we apply the theory of monotone dynamical systems:

⋆ by (A3), for ϕ ∈ C0 with ϕ ≤ Lq (L > 0 large) and f(Lq) < 0

x(t;ϕ) ≤ x(t;Lq) ց y∗

with y∗ = y∗(L) ≥ 0 equilibrium, thus all positive sol. are bounded

⋆ by (A2), for ϕ ∈ intC+ with ϕ ≥ εv (ε > 0 small), and f(εv) > 0

x(t;ϕ) ≥ x(t; εv) ր x∗

with x∗ = x∗(ε) > 0 equilibrium, thus (4) is persistent in intC+ (thus in C0)

⋆ more technical: one proves that the equilibria x∗(ε), y∗(L) do not depend on

ε ∈ (0, ε0), L ∈ (L0,∞) respec.

x∗ ≤ lim inf
t→∞

x(t;ϕ) ≤ lim sup
t→∞

x(t;ϕ) ≤ y∗.

Corollary. Under (A1)-(A3), there is at least one positive equilibrium, which is

globally attractive if it is unique.



4.2. Non-autonomous n-dim DDEs

36

x′i(t) = Fi(t, xt)− xi(t)Gi(t, xt), i = 1, . . . , n, t ≥ 0 (5)

F,G : D ⊂ R× C → R
n continuous and bounded on bounded sets
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x′i(t) = Fi(t, xt)− xi(t)Gi(t, xt), i = 1, . . . , n, t ≥ 0 (5)

F,G : D ⊂ R× C → R
n continuous and bounded on bounded sets

Theorem 5. Assume that:

(H) there are continuous functions F l, F u, Gl, Gu : C → R
n such that

F l(φ) ≤ F (t, φ) ≤ F u(φ)

Gl(φ) ≤ G(t, φ) ≤ Gu(φ) for (t, φ) ∈ D

with F l(0) ≥ 0, and the pairs (F l, Gu) and (F u, Gl) satisfy (A1),(A2) and

(A1),(A3), respec.

THEN (5) is permanent in C0.



For non-autonomous DDEs with time-dependent delays

37

Theorem 5 is not always easily applicable to FDEs with time-dependent delays!
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Theorem 5 is not always easily applicable to FDEs with time-dependent delays!

Theorem 5b. For Eq. (5), assume (A1).

In addition, suppose that the functions

x 7→ F (t, x) =: F̂ (x), x 7→ G(t, x) =: Ĝ(x), x ∈ R
n

do not depend on t.

Then,

(i) if the pair (F̂ , Ĝ) satisfies (A2), (5) is persistent in C0.

(ii) if the pair (F̂ , Ĝ) satisfies (A3), all solutions of (5) with IC in C0 are

bounded.

(However, in this case we cannot derive directly that (5) is uniformly

persistent nor dissipative.)



5. Applications to n-dim population models
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Example 3: n populations (single or multiple species), n different patches or

classes, following the ‘modified’ delayed logistic equation (L), with dispersal

terms among the classes:

x′i(t) =

mi
∑

k=1

αik(t)xi(t− τik(t))

1 + βik(t)xi(t− τik(t))
−µi(t)xi(t)−κi(t)x

2
i (t)+

n
∑

j=1

dij(t)xj(t−σij(t))

(t ≥ 0, i = 1, . . . , n)

dij(t) (i 6= j) - dispersal rates of populations moving from patch j to patch i
(dii(t) ≡ 0)

σij(t) - time taken during dispersion
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Example 3: n populations (single or multiple species), n different patches or

classes, following the ‘modified’ delayed logistic equation (L), with dispersal

terms among the classes:

x′i(t) =

mi
∑

k=1

αik(t)xi(t− τik(t))

1 + βik(t)xi(t− τik(t))
−µi(t)xi(t)−κi(t)x

2
i (t)+

n
∑

j=1

dij(t)xj(t−σij(t))

(t ≥ 0, i = 1, . . . , n)

dij(t) (i 6= j) - dispersal rates of populations moving from patch j to patch i
(dii(t) ≡ 0)

σij(t) - time taken during dispersion

As for (L):
αik, βik, dij, µi, κi, τik, σij : [0,∞) → [0,∞) continuous functions

Ai(t) :=
∑mi

k=1 αik(t), κi(t) bounded below and above by positive constant

βik, dij , µi are bounded, ∀k, i, j.



39

Theorem 6.3 IF there is a positive vector v = (v1, . . . , vn) such that

Hv > 0,

where H is the n× n matrix H = diag (A1 − µ1, . . . , An − µn) +
[

dij
]

for

dij = inf
t≥0

dij(t), Ai = inf
t≥0

Ai(t), µi = sup
t≥0

µi(t),

THEN the system is permanent, with explicit uniform lower and upper bounds

m,M given by

m ≤ lim inf
t→∞

(xi(t)/vi) ≤ lim sup
t→∞

(xi(t)/vi) ≤M, i = 1, . . . , n, with

M = max
1≤i≤n

lim sup
t→∞

1

v2i κi(t)



vi

(

mi
∑

k=1

αik(t)− µi(t)

)

+
n
∑

j=1

dij(t)vj





m = min
1≤i≤n

lim inf
t→∞

1

v2i κi(t)



vi

(

mi
∑

k=1

αik(t)

1 + βik(t)viM
− µi(t)

)

+

n
∑

j=1

dij(t)vj



 .

3
With n = 1 and dij ≡ 0, we recover Theorem 3.
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Ideas for proof: The system has the form (5), with:

Fi(t, φ) =

mi
∑

k=1

rik(t, φi(−τik(t)) +

n
∑

j=1

dij(t)φj(−σij(t)), t ≥ 0, φ ∈ C,

Gi(t, x) = µi(t) + κi(t)x, t ≥ 0, x ∈ R,

where

rik(t, x) :=
αik(t)x

1 + βik(t)x
, t ≥ 0, x ≥ 0, ∀i, k
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Ideas for proof: The system has the form (5), with:

Fi(t, φ) =

mi
∑

k=1

rik(t, φi(−τik(t)) +

n
∑

j=1

dij(t)φj(−σij(t)), t ≥ 0, φ ∈ C,

Gi(t, x) = µi(t) + κi(t)x, t ≥ 0, x ∈ R,

where

rik(t, x) :=
αik(t)x

1 + βik(t)x
, t ≥ 0, x ≥ 0, ∀i, k

After some comparison results (..), we apply Theorem 5b:

⋆ F (t, ·) sublinear

⋆ (A1),(A3) OK

⋆ Hv > 0 ⇒ (A2)
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Ideas for proof: The system has the form (5), with:

Fi(t, φ) =

mi
∑

k=1

rik(t, φi(−τik(t)) +

n
∑

j=1

dij(t)φj(−σij(t)), t ≥ 0, φ ∈ C,

Gi(t, x) = µi(t) + κi(t)x, t ≥ 0, x ∈ R,

where

rik(t, x) :=
αik(t)x

1 + βik(t)x
, t ≥ 0, x ≥ 0, ∀i, k

After some comparison results (..), we apply Theorem 5b:

⋆ F (t, ·) sublinear

⋆ (A1),(A3) OK

⋆ Hv > 0 ⇒ (A2)

To get the explicit lower and upper bounds m,M :

⋆ after the scaling xi 7→
xi

vi
, we proceed as in the proof of Theorem 3 for the

scalar (L)
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x′i(t) = xi(t)

(

βi(t)− µi(t)xi(t) +

n
∑

j=1

aij(t)

∫ τ

0

xj(t− s) dηij(s)

)

(LV )

+

n
∑

j=1

dij(t)

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

with: µi(t), βi(t), aij(t), dij(t) continuous and bounded on [0,∞),
µi(t) > 0, aij(t) ≥ 0, dij(t) ≥ 0
ηij , νij : [0,∞) → R ր are bounded, with total variation one, ∀i, j



Example 4: a Cooperative Lotka-Volterra System

41

x′i(t) = xi(t)

(

βi(t)− µi(t)xi(t) +

n
∑

j=1

aij(t)

∫ τ

0

xj(t− s) dηij(s)

)

(LV )

+

n
∑

j=1

dij(t)

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

with: µi(t), βi(t), aij(t), dij(t) continuous and bounded on [0,∞),
µi(t) > 0, aij(t) ≥ 0, dij(t) ≥ 0
ηij , νij : [0,∞) → R ր are bounded, with total variation one, ∀i, j

xi(t) - density of the i-species population

βi(t) = bi(t)−
∑n

j=1 dji(t) - where bi(t) is the Malthusian growth rate

µi(t) = mi(t) - self-limitation coefficient

aii(t) , aij(t) (j 6= i) - (delayed) intraspecific and interspecific coefficients

dij(t) (i 6= j) - dispersal rates of populations moving from patch j to patch i
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(LV ) has the form

x′i(t) = Fi(t, xt)− xi(t)Gi(t, xt) (i = 1, . . . , n) (5)

with:

Fi(t, φ) = βi(t)φi(0) +
n
∑

j=1

dij(t)

∫ τ

0

φj(−s) dνij(s),

Gi(t, φ) = µi(t)φi(0)−

n
∑

j=1

aij(t)

∫ τ

0

φj(−s) dηij(s)



42

(LV ) has the form

x′i(t) = Fi(t, xt)− xi(t)Gi(t, xt) (i = 1, . . . , n) (5)

with:

Fi(t, φ) = βi(t)φi(0) +
n
∑

j=1

dij(t)

∫ τ

0

φj(−s) dνij(s),

Gi(t, φ) = µi(t)φi(0)−

n
∑

j=1

aij(t)

∫ τ

0

φj(−s) dηij(s)

For the autonomous case (i.e., all coefficients are constants):

M = diag (β1, . . . , βn) + [dij ], N = diag (µ1, . . . , µn)− [aij ]

⋆ F is linear: OK

(A1) F and −G satisfy (Q): OK

(A2) ∃ v > 0 : F (v) =Mv > 0
(A3) ∃ q > 0 : Fi(q)− qiGi(Lq) < 0 ⇔ ∃ q > 0 : Nq > 0
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M = diag (β1, . . . , βn) + [dij], N = diag (µ1, . . . , µn)− [dij]

Theorem 7. If there are positive vectors v and q such that Mv > 0 and

Nq > 0, the autonomous system

x′i(t) = xi(t)

(

βi − µixi(t) +

n
∑

j=1

aij

∫ τ

0

xj(t− s) dηij(s)

)

+

+
n
∑

j=1

dij

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

is permanent in C0.
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M = diag (β1, . . . , βn) + [dij], N = diag (µ1, . . . , µn)− [dij]

Theorem 7. If there are positive vectors v and q such that Mv > 0 and

Nq > 0, the autonomous system

x′i(t) = xi(t)

(

βi − µixi(t) +

n
∑

j=1

aij

∫ τ

0

xj(t− s) dηij(s)

)

+

+
n
∑

j=1

dij

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

is permanent in C0.

About stability:

Theorem 7b. Under the assumptions of Thm 7, there exists a positive

equilibrium x∗, which is GAS if it satisfies Mx∗ > 0.
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βi − µixi(t) +
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xj(t− s) dηij(s)

)

+

+
n
∑

j=1

dij

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

is permanent in C0.

About stability:

Theorem 7b. Under the assumptions of Thm 7, there exists a positive

equilibrium x∗, which is GAS if it satisfies Mx∗ > 0.

Theorem 7c. The above results hold for non-cooperative autonomous LV

models where aij ∈ R, if the hypothesis Nq > 0 is replaced by N̂q > 0
where N̂ = diag (µ1, . . . , µn)− [|aij]|.
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For the non-autonomous LV model:

x′i(t) = xi(t)

(

βi(t)− µi(t)xi(t) +

n
∑

j=1

aij(t)

∫ τ

0

xj(t− s) dηij(s)

)

(LV )

+

n
∑

j=1

dij(t)

∫ τ

0

xj(t− s) dνij(s), t ≥ 0, i = 1, . . . , n

Theorem 8. For the non-autonomous (LV ), define

M l = diag (β
1
, . . . , β

n
) +

[

dij

]

,

Nu = diag (µ
1
, . . . , µ

n
)−

[

aij

]

,

where f = inft≥0 f(t), f = supt≥0 f(t). If ∃ vectors v > 0, q > 0 such

that M lv > 0 and Nuq > 0, THEN (LV ) is permanent in C0.
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