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Introduction

1. Introduction

In the case of voluntary vaccination, individuals take into account
different aspects to decide between vaccinate or not:
- the probability of become infected;
- the adverse consequences that might result from such infection
and also from vaccination, i.e. the morbidity risks.
The decision of each individual is also influenced by the decisions
of all other individuals.
Bauch and Earn (2004) used the SIR model to do a game
theoretical approach to study the impact of the changes of the
morbidity relative risk on the individual’s decisions.
Here, we consider the SIRI model that incorporates in the SIR
model the effects of reinfection due to partial immunity.
The presence of partial immunity, introduces the co-existence of
two scenarios with relevant and opposite features for the same
level of risk: the low-vaccination and the high-vaccination

scenarios.
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Vaccination Nash and ESV strategies

2. Vaccination Nash and ESV strategies

For simplicity, we assume that all individuals are provided with
the same information and use this information in the same way to
assess risks.

An individual’s strategy is the probability P that s/he will choose
to vaccinate.

The population vaccination strategy p is the proportion of
individuals who will be vaccinated and hence is the mean of all
strategies adopted by the individuals in the population.
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Vaccination Nash and ESV strategies

Let:

rv be the morbidity risks from vaccination , i.e the probability of
adverse consequences to vaccination;

ri be the morbidity risks from infection , i.e the probability of
adverse consequences to infection;

r = rv/ri be the morbidity relative risk ;

πp
v be the probability that an non vaccinated individual will

eventually be infected if the vaccine coverage level in the
population is p;

πp
v be the probability that a vaccinated individual will eventually

be infected if the vaccine coverage level in the population is p;

π(p) = πp
v − πp

v be the vaccination infection risk index .
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Vaccination Nash and ESV strategies

Hence, with this notation we define:

the payoff to an non-vaccinated individual: −riπ
p
v

the payoff to a vaccinated individual: −rv − riπ
p
v

The vaccination expected payoff E(P, p) ≡ E(P, p; r) is,

E(P, p) =
(−rv − riπv(p))P + (−riπv(p))(1− P )

ri
= −(r + πv(p))P − πv(p)(1− P )

= −πv(p) + (π(p)− r)P .

Using the usual concepts of game theory, we will define the Nash and
the evolutionary stable vaccination strategies that are more likely to be
adopted by the individuals.

J Martins (IPL/LIAAD) Vaccination strategies in the SIRI model DSABNS 2016 6 / 26



Vaccination Nash and ESV strategies

Definition

For a given relative morbidity risk r ≥ 0, the population vaccination
strategy P ∗ is a vaccination Nash equilibrium, if

E(Q,P ∗)− E(P ∗, P ∗) = (π(P ∗)− r)(Q− P ∗) ≤ 0 , (1)

for every strategies Q ∈ [0, 1].

Hence, if the population vaccination strategy is the Nash
equilibrium P ∗ then no single individual has the incentive to
change its strategy from P ∗.
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Vaccination Nash and ESV strategies

Lemma (Nash equilibria)

Let us assume that the vaccination-infection risk index π is continuous.
The population vaccination strategy P ∗ is a Nash equilibrium if, and
only if, P ∗ satisfies one of the following conditions:

(i) P ∗ = 0 and r ≥ π(0); or

(ii) P ∗ ∈ (0, 1) and r = π(P ∗); or

(iii) P ∗ = 1 and r ≤ π(1).
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Vaccination Nash and ESV strategies

Now, suppose that all individuals were opting by an individual
vaccination strategy P and consider that a group, of size ε, opt for an
individual vaccination strategy Q.
The new vaccination population strategy is

p(ε) = (1− ε)P + εQ = P + ε(Q− P ).

The vaccination expected payoff of the individuals with vaccination
strategy P is

E(P, p(ε)) = −πv(p(ε)) + (π(p(ε))− r)P ;

and with vaccination strategy Q is

E(Q, p(ε)) = −πv(p(ε)) + (π(p(ε))− r)Q.

We observe that both vaccination expected payoffs depend upon the

vaccination strategy of the individuals, P and Q, and on the sizes of the

groups, 1− ε and ε.
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Vaccination Nash and ESV strategies

The vaccination expected payoff gain function ∆EP→Q(p(ε)) of moving
from the vaccination strategy P to Q is

∆EP→Q(p(ε)) = E(Q, p(ε))− E(P, p(ε)) = (π(p(ε))− r) (Q− P ) .

∆EP→Q(p(ε)) measures the incentive that a group, of size ε, has
to change his vaccination strategy from P to Q.

Definition

For a given relative morbidity risk r ≥ 0, the population vaccination
strategy P ∗ is an evolutionary stable vaccination (ESV) strategy, if
there is a ε0 > 0, such that for every ε ∈ (0, ε0) and for every Q ∈ [0, 1],
with Q 6= P ∗,

∆EP ∗→Q(p(ε)) < 0 .

Hence, the population vaccination strategy P ∗ is an ESV strategy
if any small group of individuals that try to adopt a different
strategy Q obtain a lower payoff than those adopting P ∗.
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Vaccination Nash and ESV strategies

Lemma (ESV strategies)

Let us assume that the vaccination-infection risk index π is continuous.
A population vaccination strategy P ∗ is an ESV strategy if, and only
if, P ∗ satisfies one of the following conditions:

(i) P ∗ = 0 and r > π(0); or

(ii) P ∗ ∈ [0, 1], r = π(P ∗) and π is strictly decreasing at P ∗; or

(iii) P ∗ = 1 and r < π(1).

Furthermore, a strategy P ∗ is a Nash equilibrium that is not an ESV
strategy if, and only if, P ∗ satisfies the following condition:

(iv) P ∗ ∈ [0, 1], r = π(P ∗) and π is not strictly decreasing at P ∗.
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Vaccination expected payoff for the SIRI model

3. Vaccination expected payoff for the SIRI model

The SIRI epidemiological model is described by the ODE system:

dS

dt
= µ(1− p)− βSI − µS

dI

dt
= βSI − (µ+ γ)I + β̃RI

dR

dt
= µp+ γI − β̃RI − µR

where,
µ is the mean birth and death rate

β is the mean infection rate

β̃ is the mean reinfection rate

1/γ is the mean infectious period

p is the vaccine uptake level

S are the non-vaccinated
individuals

R are the vaccinated
individuals

J Martins (IPL/LIAAD) Vaccination strategies in the SIRI model DSABNS 2016 12 / 26



Vaccination expected payoff for the SIRI model

Since S + I +R = 1, the remaining two equations can be written in a
convenient dimensionless form

dS

dτ
= f(1− p)− (R̃0SI + fS)

dI

dτ
= R̃0SI + σR̃0RI − (1 + f)I

where,

τ = t/γ is time measured in units of the mean infectious period

f = µ/γ is the infectious period as a fraction of mean lifetime

R0 = β/(γ + µ) is the basic reproductive ratio - the average
number of secondary cases produced by a typical primary case in a
fully susceptible population

R̃0 = (1 + f)R0 is the adapted basic reproductive number

σ = β̃/β is the ratio between infection and reinfection

rates.
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Vaccination expected payoff for the SIRI model

Now, we use the stationary states S∗, I∗ and R∗ to obtain πp
v and πp

v :

πv(p) is the ratio between the susceptible individuals that become
infected −R̃0SI and all the individuals that leave the susceptible class
without vaccination −(R̃0SI + fS), i.e.

πv(p) =
R̃0SI

R̃0SI + fS
=

R̃0I

R̃0I + f
.

and πv(p) is

πv(p) =
σR̃0RI

σR̃0RI + fR
=

σR̃0I

σR̃0I + f
.
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Vaccination expected payoff for the SIRI model

Hence, for the SIRI model, the vaccination-infection risk index is

π(p) = πv(p)− πv(p) =
R̃0I

R̃0I + f
− σR̃0I

σR̃0I + f
=

f

σR̃0I + f
− f

R̃0I + f
,

and the vaccination expected payoff E(P, p) ≡ E(P, p; r,R0) is

E(P, p) = − R̃0I

R̃0I + f
+

(

f

σR̃0I + f
− f

R̃0I + f
− r

)

P .
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Vaccination expected payoff for the SIRI model

The critical vaccine uptake level pc : (0,+∞) → [0, 1] ∪ {+∞} is

pc(R0) =







0 if R0 ≤ 1
R0−1

R0(1−σ) if 1 < R0 ≤ 1
σ

+∞ if R0 >
1
σ

.
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and ∄ pcrit(R0 = 4.5).

For R0 > 1/σ, even if p = 1 the disease is not eliminated!

The value R0 = 1/σ is the reinfection threshold.
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Vaccination scenarios

4. Vaccination scenarios

Now, we will study the Nash and the ESV strategies effects in the
vaccination population strategy depending upon the perceived relative
risk r and upon the basic reproductive number R0.

First, we study the ideal vaccination scenario free of perceived
morbidity risks r = 0.

Secondly, we study the effect of the perceived morbidity risks
r > 0 in the Nash and ESV strategies of the population.
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Vaccination scenarios
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The vaccination Nash equilibrium

strategies for several R0, with R0 = 1.5,

R0 = 3 and R0 = 4.01 highlighted.

Other parameters: f = 0.001 and σ = 0.25.

Theorem (Free of relative morbidity risks)

Suppose that r = 0. The Nash equilibria are the following:
For R0 < 1/σ:

(i) pc is a left EVS strategy and a right weak EVS strategy; and

(ii) p∗ ∈ (pc, 1] are weak EVS strategies.

For R0 ≥ 1/σ:

(iii) P ∗ = 1 is an ESV strategy.
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Vaccination scenarios

For positive morbidity relative risks r > 0, we will consider small and
large reproductive ratios separated by

1 < RB =
1√
σ
+

f

1 + f
<

1

σ

for small reproductive ratios R0 ≤ RB, there a single ESV
strategy;

for large reproductive ratios R0 > RB , there is a low and a high
ESV strategy.
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Vaccination scenarios

Theorem

For small basic reproductive ratios R0 ∈ (1, RB] and positive morbidity
relative risks r > 0, the Nash equilibria are

(i) P ∗ = 0 if r ≥ π(0)

(ii) P ∗ = π−1(r) if 0 < r < π(0).

Furthermore, P ∗ are ESV strategies.
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For small values of R0 (here R0 = 1.5),
there is a

unique ESVS

for each positive morbidity relative risk

r > 0.
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Vaccination scenarios

Now, let pM be the vaccination strategy where the
vaccination-infection risk index π attains its maximum

∂π

∂p
(pM ) = 0.

We observe that pM ∈ (0, 1) if

RB < R0 < RC ,

with

RB =
1√
σ
+

f

1 + f
and RC =

1

σ
+

f

1 + f

1√
σ
.

Remark: 1 < RB < 1/σ < RC .
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Vaccination scenarios

Theorem

For the large basic reproductive ratios R0 ∈ (RB, RC) and positive
morbidity relative risks r > 0, the Nash equilibria are the following:

(i) the low ESVS P ∗ = 0 if r > π(0);

(ii) the high ESVS P ∗ = π−1(r) ∈ (pM , pc] if r < π(PM );

(iii) the Nash equilibrium, that are not ESVS, P ∗ = π−1(r) ∈ [0, pM ] if
π(0) ≤ r ≤ π(PM ).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

p

r 

For large values of R0 (here R0 = 3) and
some morbidity relative risks r > 0, we
observe the co-existence of a

low-vaccination scenario

high-vaccination scenario

with opposite features.
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Vaccination scenarios

Theorem

For the large basic reproductive ratios R0 ≥ RC and positive morbidity
relative risks r > 0, the Nash equilibria are the following:

(i) the low ESVS P ∗ = 0 if r > π(0);

(ii) the high ESVS P ∗ = 1 if r < π(1);

(iii) the Nash equilibrium, that are not ESVS, P ∗ = π−1(r) ∈ [0, 1] if
π(0) ≤ r ≤ π(1).
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For large values of R0 (here R0 = 4.01)
and some morbidity relative risk r > 0,
we observe the co-existence of the

low-vaccination scenario

P ∗ = 0

high-vaccination scenario

P ∗ = 1.
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Vaccination dynamics

5. Vaccination dynamics

We consider that a small group, of size ε, opts to change its vaccination
strategy from the population vaccination strategy P to P +∆P .
The payoff gain function satisfies

∆EP→(P+∆P )

∆P
= E(P +∆P, p)− E(P, p) = π(p)− r ,

where
p = p(ε) = (1− ε)P + ε(P +∆P ).

Hence, we define the vaccination dynamics by

dp

dτ
= α(p) lim

∆P→0

∆EP→(P+∆P )

∆P
= α(p)(π(p)− r) , (2)

where α(p) ≥ 0 measures the vaccination strategy adaptation speed of
the population.
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Vaccination dynamics

For the vaccination dynamics, we observe that:

i. the ESV strategies are attractors of the dynamics;

ii. the Nash equilibria that are not ESV strategies are boundaries of
the basin of attractions of the ESV strategies.
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The stable (solid line) and unstable (dashed line) equilibria of vaccination
dynamics for R0 = 1.5, R0 = 3 and R0 = 4.01.
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Vaccination dynamics
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