Escola de Ciências e Tecnologia Universidade de Évora

Polymatrix Games and Replicators

Telmo Peixe
CMAFCIO, ISEG, Universidade de Lisboa
(Joint work with Pedro Duarte and Hassan Alishah)

DSABNS

Évora, 2-5 Feb. 2016

- Introduction
- Introduction
- Polymatrix Games and replicators
- Introduction
- Polymatrix Games and replicators
- Example

Lotka-Volterra System

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

Lotka-Volterra System

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

$x_{i}(t) \geq 0$ represents the density of population i on time t

Lotka-Volterra System

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

$x_{i}(t) \geq 0$ represents the density of population i on time t
r_{i} its intrinsic rate of decay or growth

Lotka-Volterra System

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

$x_{i}(t) \geq 0$ represents the density of population i on time t
r_{i} its intrinsic rate of decay or growth
$a_{i j}$ represents the effect of population j over population i

Lotka-Volterra System

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left(r_{i}+\sum_{j=1}^{n} a_{i j} x_{j}\right), \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

$x_{i}(t) \geq 0$ represents the density of population i on time t
r_{i} its intrinsic rate of decay or growth
$a_{i j}$ represents the effect of population j over population i
$\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{i} \geq 0, i=1, \ldots, n\right\}$ is invariant under (1)

Replicator Equation

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left((A x)_{i}-x^{T} A x\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

Replicator Equation

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left((A x)_{i}-x^{T} A x\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix

Replicator Equation

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left((A x)_{i}-x^{T} A x\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix
$a_{i j}$ represents the average payoff for the interaction of an individual using strategy i with an individual using strategy j

Replicator Equation

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left((A x)_{i}-x^{T} A x\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix
$a_{i j}$ represents the average payoff for the interaction of an individual using strategy i with an individual using strategy j
$\Delta^{n-1}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$ is invariant under (2)

Replicator Equation

$$
\begin{equation*}
x_{i}^{\prime}=x_{i}\left((A x)_{i}-x^{T} A x\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix
$a_{i j}$ represents the average payoff for the interaction of an individual using strategy i with an individual using strategy j
$\Delta^{n-1}=\left\{x \in \mathbb{R}^{n}: x_{i} \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$ is invariant under (2)
J. Hofbauer (1981): every LV system in \mathbb{R}_{+}^{n} is orbit equivalent to a replicator system on the n-dimensional simplex Δ^{n}

Bimatrix replicator

$$
\left\{\begin{array}{rll}
x_{i}^{\prime}=x_{i}\left((A y)_{i}-x^{t} A y\right) & i=1, \ldots, n \tag{3}\\
y_{j}^{\prime}=y_{j}\left((B x)_{j}-y^{t} B x\right) & j=1, \ldots, m
\end{array}\right.
$$

Bimatrix replicator

$$
\left\{\begin{array}{lll}
x_{i}^{\prime}=x_{i}\left((A y)_{i}-x^{t} A y\right) & i=1, \ldots, n \tag{3}\\
y_{j}^{\prime}=y_{j}\left((B x)_{j}-y^{t} B x\right) & j=1, \ldots, m
\end{array}\right.
$$

State Space $=\Delta^{n-1} \times \Delta^{m-1}$

Bimatrix replicator

$$
\left\{\begin{array}{rll}
x_{i}^{\prime} & =x_{i}\left((A y)_{i}-x^{t} A y\right) & \tag{3}\\
y_{j}^{\prime} & =y_{j}\left((B x)_{j}-y^{t} B x\right) & \\
j=1, \ldots, n \\
y_{j}, \ldots, m
\end{array}\right.
$$

State Space $=\Delta^{n-1} \times \Delta^{m-1}$

Polymatrix Games

Consider a population divided in p groups

Polymatrix Games

Consider a population divided in p groups, where individuals of each group $\alpha \in\{1, \ldots, p\}$ have exactly n_{α} strategies.

Polymatrix Games

Consider a population divided in p groups, where individuals of each group $\alpha \in\{1, \ldots, p\}$ have exactly n_{α} strategies.

A polymatrix game is an ordered pair (\underline{n}, A) where $\underline{n}=\left(n_{1}, \ldots, n_{p}\right)$ is a list of positive integers, called the game type, and $A \in \mathcal{M}_{n}(\mathbb{R})$ a square matrix of dimension $n=n_{1}+\ldots+n_{p}$.

Polymatrix Games

Consider a population divided in p groups, where individuals of each group $\alpha \in\{1, \ldots, p\}$ have exactly n_{α} strategies.

A polymatrix game is an ordered pair (\underline{n}, A) where $\underline{n}=\left(n_{1}, \ldots, n_{p}\right)$ is a list of positive integers, called the game type, and $A \in \mathcal{M}_{n}(\mathbb{R})$ a square matrix of dimension $n=n_{1}+\ldots+n_{p}$.
$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix

Polymatrix Games

Consider a population divided in p groups, where individuals of each group $\alpha \in\{1, \ldots, p\}$ have exactly n_{α} strategies.

A polymatrix game is an ordered pair (\underline{n}, A) where $\underline{n}=\left(n_{1}, \ldots, n_{p}\right)$ is a list of positive integers, called the game type, and $A \in \mathcal{M}_{n}(\mathbb{R})$ a square matrix of dimension $n=n_{1}+\ldots+n_{p}$.
$A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in \mathcal{M}_{n}(\mathbb{R})$ is the payoff matrix

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

$i \in \alpha$ means that i is a strategy of the group α

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

$i \in \alpha$ means that i is a strategy of the group α
$i \in \alpha, j \in \beta$,

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$i \in \alpha$ means that i is a strategy of the group α
$i \in \alpha, j \in \beta, \quad a_{i j}$ represents the average payoff for an individual using strategy i in interaction with an individual using strategy j

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

$i \in \alpha$ means that i is a strategy of the group α
$i \in \alpha, j \in \beta, \quad a_{i j}$ represents the average payoff for an individual using strategy i in interaction with an individual using strategy j
$(A x)_{i}$ represents the payoff of strategy i

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

$i \in \alpha$ means that i is a strategy of the group α
$i \in \alpha, j \in \beta, \quad a_{i j}$ represents the average payoff for an individual using strategy i in interaction with an individual using strategy j
$(A x)_{i}$ represents the payoff of strategy i
$\sum_{j \in \alpha} x_{j}(A x)_{j}$ represents the average payoff of all strategies in the group α

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), i \in \alpha, \alpha=1, \ldots, p
$$

$$
\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}
$$

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$$
\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}
$$

($p=1$) replicator equation

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$$
\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}
$$

($p=1$) replicator equation
$\left(p=2, \quad A^{1,1}=A^{2,2}=0\right) \quad$ bimatrix replicator

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$$
\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}
$$

($p=1$) replicator equation
$\left(p=2, \quad A^{1,1}=A^{2,2}=0\right) \quad$ bimatrix replicator
$\left(A^{\alpha, \alpha}=0, \alpha=1, \ldots, p\right) \quad$ replicator eq. for n-person games

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$X_{\underline{n}, A}$ denotes the associated vector field on $\Gamma_{\underline{n}}$

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$X_{\underline{n}, A}$ denotes the associated vector field on $\Gamma_{\underline{n}}$

$$
\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}
$$

Polymatrix Replicator

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

$X_{\underline{n}, A}$ denotes the associated vector field on $\Gamma_{\underline{n}}$
$\Gamma_{\underline{n}}:=\Delta^{n_{1}-1} \times \ldots \times \Delta^{n_{p}-1} \subset \mathbb{R}^{n}$
$\Gamma_{\underline{n}}$ is parallel to $H_{\underline{n}}:=\left\{x \in \mathbb{R}^{n}: \sum_{j \in \alpha} x_{j}=0\right.$, for $\left.\alpha=1, \ldots, p\right\}$

Polymatrix Replicator - Interior equilibria

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

Polymatrix Replicator - Interior equilibria

$$
x_{i}^{\prime}=x_{i}\left((A x)_{i}-\sum_{j \in \alpha} x_{j}(A x)_{j}\right), \quad i \in \alpha, \alpha=1, \ldots, p
$$

Proposition

Given a polymatrix game (\underline{n}, A), a point $q \in \operatorname{int}\left(\Gamma_{\underline{n}}\right)$ is an equilibrium of $X_{n, A}$ if and only if $(A q)_{i}=(A q)_{j}$ for all $i, j \in \alpha$ and $\alpha=1, \ldots, p$.

Polymatrix Games - Formal equilibrium

We say that any vector $q \in \mathbb{R}^{n}$ is a formal equilibrium of a polymatrix game (\underline{n}, A) if

Polymatrix Games - Formal equilibrium

We say that any vector $q \in \mathbb{R}^{n}$ is a formal equilibrium of a polymatrix game (\underline{n}, A) if
(a) $(A q)_{i}=(A q)_{j}$ for all $i, j \in \alpha$, and all $\alpha=1, \ldots, p$,

Polymatrix Games - Formal equilibrium

We say that any vector $q \in \mathbb{R}^{n}$ is a formal equilibrium of a polymatrix game (\underline{n}, A) if
(a) $(A q)_{i}=(A q)_{j}$ for all $i, j \in \alpha$, and all $\alpha=1, \ldots, p$,
(b) $\sum_{j \in \alpha} q_{j}=1$ for all $\alpha=1, \ldots, p$.

Polymatrix Games - Formal equilibrium

We say that any vector $q \in \mathbb{R}^{n}$ is a formal equilibrium of a polymatrix game (n, A) if
(a) $(A q)_{i}=(A q)_{j}$ for all $i, j \in \alpha$, and all $\alpha=1, \ldots, p$,
(b) $\sum_{j \in \alpha} q_{j}=1$ for all $\alpha=1, \ldots, p$.

We call diagonal matrix of type \underline{n} to any diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ s.t. $d_{i}=d_{j}$ for all $i, j \in \alpha$ and $\alpha=1, \ldots, p$.

Polymatrix Games - Formal equilibrium

We say that any vector $q \in \mathbb{R}^{n}$ is a formal equilibrium of a polymatrix game (\underline{n}, A) if
(a) $(A q)_{i}=(A q)_{j} \quad$ for all $i, j \in \alpha$, and all $\alpha=1, \ldots, p$,
(b) $\sum_{j \in \alpha} q_{j}=1 \quad$ for all $\alpha=1, \ldots, p$.

We call diagonal matrix of type \underline{n} to any diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ s.t. $d_{i}=d_{j}$ for all $i, j \in \alpha$ and $\alpha=1, \ldots, p$.

	n_{1}	...	n_{α}		n_{p}
n_{1}	$d_{1} I_{n_{1}}$	\ldots	0	\ldots	0
	:	\because	!	\ddots	
n_{α}	0	\ldots	$d_{\alpha} I_{n_{\alpha}}$	\ldots	0
:	:		:	\bigcirc	
n_{p}	0	\ldots	0	\ldots	$d_{p} l_{n_{p}}$]

Conservative Polymatrix Replicators

Quadratic form $Q_{A}: H_{\underline{n}} \rightarrow \mathbb{R}, Q_{A}(w):=w^{\top} A w$

Conservative Polymatrix Replicators

Quadratic form $Q_{A}: H_{\underline{n}} \rightarrow \mathbb{R}, Q_{A}(w):=w^{\top} A w$

Definition
A polymatrix game (\underline{n}, A) is called conservative if it has a formal equilibrium q, and there exists a positive diagonal matrix D of type \underline{n} s.t. $Q_{A D}=0$ on $H_{\underline{n}}$.

Conservative Polymatrix Replicators

Quadratic form $Q_{A}: H_{\underline{n}} \rightarrow \mathbb{R}, Q_{A}(w):=w^{\top} A w$

Definition

A polymatrix game (\underline{n}, A) is called conservative if it has a formal equilibrium q, and there exists a positive diagonal matrix D of type \underline{n} s.t. $Q_{A D}=0$ on $H_{\underline{n}}$.

Proposition

If (\underline{n}, A) is conservative, q a formal equilibrium, and D a p.d.m. of type \underline{n} s.t. $Q_{A D}=0$ on $H_{\underline{n}}$, then

$$
h(x)=-\sum_{i=1}^{n} \frac{q_{i}}{d_{i}} \log x_{i}
$$

is a first integral for the flow of $X_{n, A}$, i.e., $\dot{h}=0$ along the flow of $X_{n, A}$.

Conservative Polymatrix Replicators

Quadratic form $Q_{A}: H_{\underline{n}} \rightarrow \mathbb{R}, Q_{A}(w):=w^{\top} A w$

Definition

A polymatrix game (\underline{n}, A) is called conservative if it has a formal equilibrium q, and there exists a positive diagonal matrix D of type \underline{n} s.t. $Q_{A D}=0$ on $H_{\underline{n}}$.

Proposition

If (\underline{n}, A) is conservative, q a formal equilibrium, and D a p.d.m. of type \underline{n} s.t. $Q_{A D}=0$ on $H_{\underline{n}}$, then

$$
h(x)=-\sum_{i=1}^{n} \frac{q_{i}}{d_{i}} \log x_{i}
$$

is a first integral for the flow of $X_{n, A}$, i.e., $\dot{h}=0$ along the flow of $X_{n, A}$. Moreover, $X_{n, A}$ is Hamiltonian w.r.t. a stratified Poisson structure on the prism $\Gamma_{\underline{n}}$, having h as its Hamiltonian function.

Dissipative Polymatrix Replicators

Definition

A polymatrix game (\underline{n}, A) is called dissipative if it has a formal equilibrium q, and there exists a positive diagonal matrix D of type \underline{n} s.t. $Q_{A D} \leq 0$ on $H_{\underline{n}}$.

Dissipative Polymatrix Replicators

Definition

A polymatrix game (\underline{n}, A) is called dissipative if it has a formal equilibrium q, and there exists a positive diagonal matrix D of type \underline{n} s.t. $Q_{A D} \leq 0$ on $H_{\underline{n}}$.

Proposition (Lyapunov function)

If (\underline{n}, A) is dissipative, q a formal equilibrium and D a p.d.m. of type \underline{n} s.t. $Q_{A D} \leq 0$ on $H_{\underline{n}}$, then

$$
h(x)=-\sum_{i=1}^{n} \frac{q_{i}}{d_{i}} \log x_{i}
$$

is a Lyapunov function for the flow of $X_{n, A}$.

Dissipative Polymatrix Replicators

Proposition (Invariant Foliation)

Given a dissipative polymatrix game (n, A), if $X_{n, A}$ admits a formal equilibrium q, then there exists a $X_{\underline{n}, A}$-invariant foliation \mathscr{F} on $\operatorname{int}\left(\Gamma_{\underline{n}}\right)$.

Dissipative Polymatrix Replicators

Proposition (Invariant Foliation)

Given a dissipative polymatrix game (n, A), if $X_{n, A}$ admits a formal equilibrium q, then there exists a $X_{n, A}$-invariant foliation \mathscr{F} on $\operatorname{int}\left(\Gamma_{n}\right)$. Moreover, if $q \in \operatorname{int}\left(\Gamma_{\underline{n}}\right)$, then every leaf of \mathscr{F} contains exactly one equilibrium point.

Polymatrix Game - Example

Consider a population divided in 3 groups

Polymatrix Game - Example

Consider a population divided in 3 groups
where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies
(3)
(4)
(5)
(6)

Polymatrix Game - Example

Consider a population divided in 3 groups where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where
individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where
individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where
individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Consider a population divided in 3 groups where
individuals of each group $\alpha \in\{1,2,3\}$ have exactly 2 strategies

Polymatrix Game - Example

Polymatirx game $\mathcal{G}=((2,2,2), A)$

Polymatrix Game - Example

Polymatirx game $\mathcal{G}=((2,2,2), A)$

$$
A=\left[\begin{array}{cc|cc|cc}
0 & -102 & 0 & 79 & 0 & 18 \\
102 & 0 & 0 & -79 & -18 & 9 \\
\hline 0 & 0 & 0 & 0 & 9 & -18 \\
-51 & 51 & 0 & 0 & 0 & 0 \\
\hline 0 & 102 & -79 & 0 & -18 & -9 \\
-102 & -51 & 158 & 0 & 9 & 0
\end{array}\right]
$$

Polymatrix Game - Example

Polymatirx game $\mathcal{G}=((2,2,2), A)$

$$
A=\left[\begin{array}{cc|cc|cc}
0 & -102 & 0 & 79 & 0 & 18 \\
102 & 0 & 0 & -79 & -18 & 9 \\
\hline 0 & 0 & 0 & 0 & 9 & -18 \\
-51 & 51 & 0 & 0 & 0 & 0 \\
\hline 0 & 102 & -79 & 0 & -18 & -9 \\
-102 & -51 & 158 & 0 & 9 & 0
\end{array}\right]
$$

$X_{\mathcal{G}}$ vector field associated to the polymatrix replicator

Polymatrix Game - Example State Space

$$
\Gamma_{(2,2,2)}=\Delta^{1} \times \Delta^{1} \times \Delta^{1} \equiv[0,1]^{3}
$$

Polymatrix Game - Example State Space

$$
\Gamma_{(2,2,2)}=\Delta^{1} \times \Delta^{1} \times \Delta^{1} \equiv[0,1]^{3}
$$

Figure: State space of \mathcal{G}.

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

and 10 equilibria in $\partial \Gamma_{(2,2,2)}$,

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

and 10 equilibria in $\partial \Gamma_{(2,2,2)}$, eight of them vertices,

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

and 10 equilibria in $\partial \Gamma_{(2,2,2)}$, eight of them vertices, and the remaining two on different faces,

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

and 10 equilibria in $\partial \Gamma_{(2,2,2)}$, eight of them vertices, and the remaining two on different faces,

$$
q_{1}=\left(\frac{7}{17}, \frac{10}{17}, \frac{37}{79}, \frac{42}{79}, 1,0\right) \quad \text { and } \quad q_{2}=\left(\frac{23}{34}, \frac{11}{34}, \frac{65}{158}, \frac{93}{158}, 0,1\right) .
$$

Polymatrix Game - Example Equilibria

The associated polymatrix replicator has one interior equilibrium

$$
q=\left(\frac{1}{2}, \frac{1}{2}, \frac{71}{158}, \frac{87}{158}, \frac{2}{3}, \frac{1}{3}\right)
$$

and 10 equilibria in $\partial \Gamma_{(2,2,2)}$, eight of them vertices, and the remaining two on different faces,

$$
q_{1}=\left(\frac{7}{17}, \frac{10}{17}, \frac{37}{79}, \frac{42}{79}, 1,0\right) \quad \text { and } \quad q_{2}=\left(\frac{23}{34}, \frac{11}{34}, \frac{65}{158}, \frac{93}{158}, 0,1\right) .
$$

Figure: The equilibria of the associated polymatrix replicator of \mathcal{G}.

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

$$
Q_{A D}(x)=-x_{3}^{2} \leq 0,
$$

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

$$
Q_{A D}(x)=-x_{3}^{2} \leq 0,
$$

where

$$
D=\left[\begin{array}{cc|cc|cc}
\frac{1}{51} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{51} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \frac{1}{79} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{79} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \frac{1}{9} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{9}
\end{array}\right]
$$

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

$$
Q_{A D}(x)=-x_{3}^{2} \leq 0,
$$

where

$$
D=\left[\begin{array}{cc|cc|cc}
\frac{1}{51} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{51} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \frac{1}{79} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{79} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \frac{1}{9} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{9}
\end{array}\right]
$$

is a positive diagonal matrix of type $(2,2,2)$.

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

$$
Q_{A D}(x)=-x_{3}^{2} \leq 0,
$$

where

$$
D=\left[\begin{array}{cc|cc|cc}
\frac{1}{51} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{51} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \frac{1}{79} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{79} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \frac{1}{9} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{9}
\end{array}\right]
$$

is a positive diagonal matrix of type $(2,2,2)$.
By definition, \mathcal{G} is dissipative.

Polymatrix Game - Example Dynamics

The quadratic form $Q_{A D}: H_{(2,2,2)} \rightarrow \mathbb{R}$ induced by matrix A is

$$
Q_{A D}(x)=-x_{3}^{2} \leq 0
$$

where

$$
D=\left[\begin{array}{cc|cc|cc}
\frac{1}{51} & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{51} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & \frac{1}{79} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{79} & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & \frac{1}{9} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{9}
\end{array}\right]
$$

is a positive diagonal matrix of type $(2,2,2)$.
By definition, \mathcal{G} is dissipative.
By Proposition (Lyapunov Function), this system admits a strict global Lyapunov function

$$
h: \operatorname{int}\left(\Gamma_{(2,2,2)}\right) \rightarrow \mathbb{R}
$$

for $X_{\mathcal{G}}$.

Polymatrix Game - Example Dynamics

Figure: An approximation of the $X_{\mathcal{G}}$-invariant manifold from two different perspectives (up), and two different orbits starting near the respective faces equilibrium (down).

Bibliography

- Alishah, H. N., Duarte, P., Peixe, T., Conservative and Dissipative Polymatrix Replicators, Journal of Dynamics and Games, 2, (2015), n.2, 157-185.
- Alishah, H. N., Duarte, P., Peixe, T., Asymptotic Poincaré maps along the edges of polytopes, Submitted, (2015).
- Alishah, H. N., Duarte, P., Peixe, T., Asymptotic Dynamics of Hamiltonian Polymatrix Replicators, In preparation, (2015).

