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Lotka-Volterra System

x ′i = xi

ri +
n∑

j=1

aij xj

 , i = 1, . . . , n (1)

xi (t) ≥ 0 represents the density of population i on time t

ri its intrinsic rate of decay or growth

aij represents the e�ect of population j over population i

Rn
+ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n} is invariant under (1)
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Replicator Equation

x ′i = xi
(
(Ax)i − xT Ax

)
, i = 1, . . . , n (2)

A = (aij)1≤i,j≤n ∈Mn(R) is the payo� matrix

aij represents the average payo� for the interaction of an individual using
strategy i with an individual using strategy j

∆n−1 = {x ∈ Rn : xi ≥ 0 ,
∑n

i=1
xi = 1} is invariant under (2)

J. Hofbauer (1981): every LV system in Rn
+ is orbit equivalent to a

replicator system on the n-dimensional simplex ∆n
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Bimatrix replicator

{
x ′i = xi ((Ay)i − x t Ay) i = 1, . . . , n
y ′j = yj ((Bx)j − y t B x) j = 1, . . . ,m

(3)

State Space = ∆n−1 ×∆m−1

n m n 0 An×m

m Bm×n 0

(n+m)×(n+m)
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Polymatrix Games
Consider a population divided in p groups

, where individuals of each
group α ∈ {1, . . . , p} have exactly nα strategies.

A polymatrix game is an ordered pair (n,A) where n = (n1, . . . , np) is a
list of positive integers, called the game type, and A ∈Mn(R) a square
matrix of dimension n = n1 + . . .+ np.

A = (aij)1≤i,j≤n ∈Mn(R) is the payo� matrix

n1 . . . nβ . . . np



n1 A1,1 . . . A1,β . . . A1,p

...
...

. . .
...

. . .
...

nα Aα,1 . . . Aα,β . . . Aα,p
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. . .
...

. . .
...

np Ap,1 . . . Ap,β . . . Ap,p

n×n
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Polymatrix Replicator

x ′i = xi

(Ax)i −
∑
j∈α

xj (Ax)j

 , i ∈ α, α = 1, . . . , p

i ∈ α means that i is a strategy of the group α

i ∈ α, j ∈ β, aij represents the average payo� for an individual using
strategy i in interaction with an individual using strategy j

(Ax)i represents the payo� of strategy i

∑
j∈α xj (Ax)j represents the average payo� of all strategies in the

group α
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x ′i = xi

(Ax)i −
∑
j∈α

xj (Ax)j
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Γn := ∆n1−1 × . . .×∆np−1 ⊂ Rn

(p = 1) replicator equation

(p = 2, A1,1 = A2,2 = 0) bimatrix replicator

(Aα,α = 0, α = 1, . . . , p) replicator eq. for n-person games
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Polymatrix Replicator

x ′i = xi

(Ax)i −
∑
j∈α

xj (Ax)j

 , i ∈ α, α = 1, . . . , p

Xn,A denotes the associated vector �eld on Γn

Γn := ∆n1−1 × . . .×∆np−1 ⊂ Rn

Γn is parallel to Hn :=
{
x ∈ Rn :

∑
j∈α xj = 0, for α = 1, . . . , p

}
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Polymatrix Replicator - Interior equilibria

x ′i = xi

(Ax)i −
∑
j∈α

xj (Ax)j

 , i ∈ α, α = 1, . . . , p

Proposition
Given a polymatrix game (n,A), a point q ∈ int(Γn) is an equilibrium of
Xn,A if and only if (Aq)i = (Aq)j for all i , j ∈ α and α = 1, . . . , p.
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Polymatrix Games - Formal equilibrium
We say that any vector q ∈ Rn is a formal equilibrium of a polymatrix
game (n,A) if

(a) (Aq)i = (Aq)j for all i , j ∈ α, and all α = 1, . . . , p,

(b)
∑

j∈α qj = 1 for all α = 1, . . . , p.

We call diagonal matrix of type n to any diagonal matrix D = diag(di )
s.t. di = dj for all i , j ∈ α and α = 1, . . . , p.

n1 . . . nα . . . np



n1 d1In1 . . . 0 . . . 0
...

...
. . .

...
. . .

...

nα 0 . . . dαInα . . . 0
...

...
. . .

...
. . .

...

np 0 . . . 0 . . . dpInp

n×n
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Conservative Polymatrix Replicators

Quadratic form QA : Hn → R , QA(w) := wTAw

De�nition
A polymatrix game (n,A) is called conservative if it has a formal
equilibrium q, and there exists a positive diagonal matrix D of type n s.t.
QAD = 0 on Hn.

Proposition
If (n,A) is conservative, q a formal equilibrium, and D a p.d.m. of type n
s.t. QAD = 0 on Hn, then

h(x) = −
n∑

i=1

qi
di

log xi

is a �rst integral for the �ow of Xn,A, i.e., ḣ = 0 along the �ow of Xn,A.
Moreover, Xn,A is Hamiltonian w.r.t. a strati�ed Poisson structure on the
prism Γn, having h as its Hamiltonian function.
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Dissipative Polymatrix Replicators

De�nition
A polymatrix game (n,A) is called dissipative if it has a formal
equilibrium q, and there exists a positive diagonal matrix D of type n
s.t. QAD ≤ 0 on Hn.

Proposition (Lyapunov function)
If (n,A) is dissipative, q a formal equilibrium and D a p.d.m. of type n
s.t. QAD ≤ 0 on Hn, then

h(x) = −
n∑

i=1

qi
di

log xi

is a Lyapunov function for the �ow of Xn,A.
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Dissipative Polymatrix Replicators

Proposition (Invariant Foliation)
Given a dissipative polymatrix game (n,A), if Xn,A admits a formal
equilibrium q, then there exists a Xn,A-invariant foliation F on int(Γn).

Moreover, if q ∈ int(Γn), then every leaf of F contains exactly one
equilibrium point.
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Polymatrix Game - Example

Polymatirx game G = ((2, 2, 2),A)

A =


0 −102 0 79 0 18
102 0 0 −79 −18 9
0 0 0 0 9 −18
−51 51 0 0 0 0
0 102 −79 0 −18 −9
−102 −51 158 0 9 0

 .

XG vector �eld associated to the polymatrix replicator
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Polymatrix Game - Example State Space

Γ(2,2,2) = ∆1 ×∆1 ×∆1 ≡ [0, 1]3

Figure: State space of G.
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Polymatrix Game - Example Equilibria
The associated polymatrix replicator has one interior equilibrium

q =

(
1
2
,
1
2
,
71
158

,
87
158

,
2
3
,
1
3

)
and 10 equilibria in ∂Γ(2,2,2), eight of them vertices, and the remaining
two on di�erent faces,

q1 =

(
7
17
,
10
17
,
37
79
,
42
79
, 1, 0

)
and q2 =

(
23
34
,
11
34
,
65
158

,
93
158

, 0, 1

)
.

Figure: The equilibria of the associated polymatrix replicator of G.
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Polymatrix Game - Example Dynamics
The quadratic form QAD : H(2,2,2) → R induced by matrix A is

QAD(x) = −x2
3
≤ 0 ,

where

D =



1

51
0 0 0 0 0

0 1

51
0 0 0 0

0 0 1

79
0 0 0

0 0 0 1

79
0 0

0 0 0 0 1

9
0

0 0 0 0 0 1

9


is a positive diagonal matrix of type (2, 2, 2).

By de�nition, G is dissipative.

By Proposition (Lyapunov Function), this system admits a strict global
Lyapunov function

h : int
(
Γ(2,2,2)

)
→ R

for XG .
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Polymatrix Game - Example Dynamics

Figure: An approximation of the XG-invariant manifold from two di�erent
perspectives (up), and two di�erent orbits starting near the respective
faces equilibrium (down).
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