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Introduction
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Why do we study biological invasion?

The term biological invasion refers to a variety of phenomena
arising as a result of introduction and proliferation of alien (or
‘exotic’) species.

Consequences of alien species invasion:

• The new species often appears to be a strong competitor
or a very efficient predator to the native species, which
may lead to extinction and severe damage to biodiversity

• The new species often becomes a dangerous pest and
that can result in huge direct and indirect economic losses
Also

• The new species can be a vector for a certain disease.
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Traveling front vs. patchy invasion

Ecological examples and applications 173

 

FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by

Invasion of Japanese beetle Invasion of Gypsy moth
(Popillia japonica) (Lymantria dispar)
in the United States in the United States

2-D traveling front Patchy invasion
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Geographic spread of Gypsy moth

(by courtesy of Andrew Liebhold)
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Modelling patchy invasion: diffusion-reaction system

A predator-prey system:
∂U(R, T )

∂T
= D1∇2U(R, T ) + f (U)U − r(U)V ,

∂V (R, T )

∂T
= D2∇2V (R, T ) + κr(U)V −MV ,

where U and V are the densities of prey and predator,
respectively, at position R = (X , Y ) and time T ,

f (U) = α(U − U0)(K − U), α is the maximum growth rate, K is
the carrying capacity, U0 is the Allee threshold,

r(U) = η
U

H + U
, η is the predation rate, H is the half-saturation

prey density, κ is the efficiency,

M is the mortality rate

S. Petrovskii, A. Morozov and E. Venturino. Allee effect makes possible patchy invasion in a predator–prey

system. Ecology Letters, (2002) 5:345–352.
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Simulation of patchy invasion: example
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Simulation of patchy invasion: example
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Long-distance dispersal (LDD)

• Long-distance dispersal is not a well-studied phenomenon.

• There is the conceptual complexity in defining LDD.

• If sufficient biological information is available, the frequency
distribution of dispersal distances may be obtainable from
either direct measurements or indirect estimates.

• The LDD may be defined on the base of a certain
threshold of absolute dispersal distance that is much
longer than the median dispersal distance.
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Long-distance dispersal (LDD) is important!

• "Invading organisms may spread through local movements
(giving rise to a diffusion-like process) and by
long-distance jumps..."
A. V. Suarez, D.A. Holway, T.J.Case. Patterns of spread in biological invasions dominated by

long-distance jump dispersal: Insights from Argentine ants. Proc Natl Acad Sci USA. (2001) 98(3):

1095–1100.

• "The main threats to global biodiversity involve excessive
LDD of elements alien to ecosystems and insufficient
dispersal of native species..."
A. Trakhtenbrot, R. Nathan, G. Perry, D.M. Richardson. The importance of long-distance dispersal in

biodiversity conservation. Divers. Distrib. (2005) 11: 173–181.

• "The relative importance of diffusion (expanding front) vs.
long-distance dispersal can inform management of
invasive species..."
M.E. Moody, R.N. Mack. Controlling the spread of plant invasions: the importance of nascent foci.

(1988) J Appl Ecol 25:1009–1021
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How does LDD contribute to patchy invasion?

• Patchy invasion is observed in the diffusion-reaction
model(s).

• Effect of long-distance dispersal?

• Long-distance dispersal is important yet diffusion
approximation neglects it.

• The need for an alternative framework where long-distance
dispersal can be modelled.

L.A.D. Rodrigues, D.C.Mistro, E.R.Cara, N.B.Petrovskaya, S.V.Petrovskii. Patchy Invasion of

Stage-Structured Alien Species with Short-Distance and Long-Distance Dispersal. Bull Math Biol

(2015) 77:1583–1619
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Modelling patchy invasion

with long-distance dispersal:

integro-difference equations
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The IDE-based framework

We consider a system of integro-difference equations:

ut+1(r) =

∫
Ω

k (u)
(
|r− r′|

)
f
(
ut
(
r′
)
, vt
(
r′
))

dr′,

vt+1(r) =

∫
Ω

k (v)
(
|r− r′|

)
g
(
ut
(
r′
)
, vt
(
r′
))

dr′,

• The dispersal kernel k (|r− r′|) gives the probability
density of the event that an individual located at the
position r′ before the dispersal will be found at the position
r after the dispersal.

• Hence long-distance dispersal can be modelled.
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The IDE-based framework

We assume that both species have a similar life cycle so that
they interact during their maturation stage:

ũt(r) = f (ut (r) , vt (r)) , ṽt(r) = g (ut (r) , vt (r)) ,

where ũt(r) and ṽt(r) are the population densities prior the
dispersal stage,

f (u, v) =
a (u(r))2

1 + b (u(r))2 · exp (−v(r)) ,

g(u, v) = u(r)v(r),

a = A/δ, b = (B/δ)2, A is the prey intrinsic growth rate, 1/B is
the prey density for which its per capita growth rate reaches its
maximum, and δ is the predator growth rate.
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Dispersal kernel: the ‘reference case’

• The Gaussian kernel

kG

(
|r− r′|

)
=

1
2πα2

i
exp

(
−|r− r′|2

2α2
i

)
.

• The diffusion-reaction model:
the distances individuals move over a given length of time
are drawn from a normal distribution.

• Hence dispersal with the Gaussian kernel is equivalent (in
some sense) to diffusion.
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Dispersal kernel: the ‘reference case’

kG

(
|r− r′|

)
=

1
2πα2

i
exp

(
−|r− r′|2

2α2
i

)
.
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Fat-tailed kernels in 1− D

Long-distance asymptotics for the Gaussian kernel:

k(x) ∼ e−ax2
.

Fat-tailed kernels – power-law decay:

k(x) ∼ x−µ (1 < µ < 3)

The Cauchy distribution (µ = 2):

kC(x) =
β

π(β2 + x2)
∼ x−2.
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Fat-tailed kernels in 2− D

Long-distance asymptotics: k(r) ∼ r−(µ+1) (1 < µ < 3)

Extension onto the 2− D case is ambiguous.

Cauchy kernels Type I:

kCI (r, r′) =
β2

i
π(βi + |r− r′|)3 ∼ |r− r′|−3 ,

Cauchy kernels Type II:

kCII (r, r′) =
γi

2π
(
γ2

i + |r− r′|2
)3/2 ∼ |r− r′|−3 .
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Fat-tailed kernels

Questions arising:

• Can patchy spread occur for the fat-tailed dispersal?

• How the rate of spread may differ between different
kernels?

L.A.D. Rodrigues, D.C.Mistro, E.R.Cara, N.B.Petrovskaya, S.V.Petrovskii. Patchy Invasion of

Stage-Structured Alien Species with Short-Distance and Long-Distance Dispersal. Bull Math Biol

(2015) 77:1583–1619
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Simulations, kernel Type I
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Simulations, kernel Type II
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Computational issues related to modelling

invasion with long-distance dispersal
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Computational issues

Computational issues arising in the problem are related to the
fact that the kernel-based model is non-local.

Two issues to discuss:

• The choice of a numerical method: fast Fourier transform
vs. numerical integration

• Numerical implementation of boundary conditions
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Fast Fourier transform vs. numerical integration

ut+1(r) =

∫
Ω

k (u)
(
|r− r′|

)
f
(
ut
(
r′
)
, vt
(
r′
))

dr′,

vt+1(r) =

∫
Ω

k (v)
(
|r− r′|

)
g
(
ut
(
r′
)
, vt
(
r′
))

dr′,

Numerical integration:

• One time step on a grid of K = 27 nodes in each direction
takes approximately 40 seconds.
(Intel(R)Core(TM)2Duo CPU T5870 @ 2.00GHz, 3.00GB
of RAM)

• The number of operations is O(K 4). Alternative numerical
technique is required to compute the solution on finer grids
(K = 212) at bigger times (t ∼ 200).
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Fourier transform

•

f ∗ g =

+∞∫
−∞

f (y)g(x − y)dy

• The convolution theorem̂f ∗ g(s) =
1

2π
f̂ (s)ĝ(s)

• The discrete Fourier transform (DFT) of the function [fk ]

Fs =
1
K

K−1∑
k=0

fke2πiks/K

• The inverse transform is

fk =
K−1∑
s=0

Fse−2πiks/K
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Fast Fourier transform vs. numerical integration

• Computing and inverting the DFT can be done efficiently
with help of the fast Fourier transform (FFT) numerical
algorithms.

• While the number of operations in a straightforward DFT
computation is O(K 2), an FFT algorithm reduces that
number to O(K log2 K ).

• The FFT is superior to methods of numerical integration.
(Numerical integration by a composite trapezoidal rule can
be done in O(K 2) operations.)
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Implementation of boundary conditions

• The integro-difference equations do not necessarily require
boundary conditions.

• The absence of boundary conditions corresponds to a
specific biological situation:
at every time step a certain fraction of the population
leaves the computational domain Ω because of the
dispersal.

• Since the space outside of domain Ω is not taken into
account in the model, it means that this fraction never
comes back and hence is lost forever (‘free outflow’
boundary conditions)
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Implementation of boundary conditions

• The free outflow boundary conditions are intrusive.

• They are likely to hamper the population growth inside the
domain, or even bring it down to extinction altogether.

• The free outflow boundary conditions will result in the
population dynamics with different properties (the
boundary forcing).
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Implementation of boundary conditions

• We assume that the population dynamics will not be
sensitive to the choice of the boundary condition over the
time when the spreading populations remain sufficiently far
from the domain boundary.

• Hence we require that a computational domain is
sufficiently large.

• This requirement was confirmed by results of our
numerical experiments.
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Implementation of boundary conditions

• We assume that the population dynamics will not be
sensitive to the choice of the boundary condition over the
time when the spreading populations remain sufficiently far
from the domain boundary.

• Hence we require that a computational domain is
sufficiently large.

• This requirement was confirmed by results of our
numerical experiments.

• What is ‘a sufficiently large’ domain?
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Modelling nonlocal boundary conditions

• The normally distributed symmetric kernel:

k(x , y) =
1√

2πα2
exp (−(x − y)2

2α2 ).

where (x , y) ∈ Ω.

• The total probability is

P(x) =

∫
Ω

k(x , y)dy ≡ 1.

• The boundary can only be regarded as non-intrusive when
this condition holds at any point in the computational
domain Ω.
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Computation of the non-local kernel
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Modelling nonlocal boundary conditions

We have to redefine the domain size in order to meet the
condition P(x) = 1 at any point x of the new domain.

P =

∫
Ω

k(y)dy =

L∫
−L

k(y)dy =
1
2

[
erf
(

L− x√
2α

)
+ erf

(
L + x√

2α

)]
,

where erf (x) is the error function with the following
properties:
erf (−x) = −erf (x), and erf (x) is a monotone function of x ,
and erf (x) → 1 as x →∞.

We require that

erf (
L− x√

2α
) = 1 and erf (

L + x√
2α

) = 1

with sufficient precision.
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Modelling nonlocal boundary conditions

• Select tolerance xτ : erf (x) ≈ 1 for x ≥ xτ (e.g.
erf (3) = 0.99998).

• Require that

L− x√
2α

≥ xτ and
L + x√

2α
≥ xτ

• Define ΩK – the extended domain preserving the integral
with sufficient accuracy in the original domain Ω = [−L, L].

ΩK = [−L− xτ

√
2α, L + xτ

√
2α].

Parameter α also gives us a rough estimate of the grid
step size in the problem (the interval of the length α should
contain at least one grid point)
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Computation of the non-local kernel
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Conclusions

• Interplay between the Allee effect and predation can turn
continuous-front invasion into a patchy invasion. This
appears to be a generic property of growth-dispersal
systems (PDEs, IDEs).

• Long-distance dispersal preserves patchy invasion. Patchy
invasion has been observed in a mathematical model with
fat-tailed dispersal kernels.

• Integro-difference equations require careful choice of a
numerical method.
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