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Plan of the talk

• Introduction: what it is all about

• Complexity of individual movement

• Why move? – behaviour and its implications

I Scenario 1
I Scenario 2
I Scenario 3

• Discussion & conclusions



Dispersal in ecology

Dispersal is redistribution of a given population in space due to
the motion of its individuals







Importance of dispersal

Dispersal is the factor that makes ecology essentially
spatial.

� Biological invasions and spread of infectious diseases

� Synchronization of population dynamics in a fragmented
habitat

The dynamics of spatial and non-spatial systems is often
qualitatively different, hence the understanding of dispersal
patterns is crucial for the understanding of ecological
dynamics.

Dispersal of a population takes place through movement of
its individuals. Hence, a good understanding of the
individual (animal) movement is necessary
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Individual animal movement path is often quite complicated...
because it normally arises as a result of interaction between
internal states of the animal and the landscape structure
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Complexity of individual movement

Individual animal movement has several movement modes
involving different spatial and temporal scales.

We will focus on the intermediate scale of foraging in a
homogeneous environment (e.g. between feeding grounds),
ultimately reducing it to the ‘microscale’ of a single step or an
elementary movement decision.



How the movement can be quantified?

We assume that a curvilinear path can be mapped into a
broken line (e.g. due to discreteness of observations):F. Jopp, H. Reuter / Ecological Modelling 186 (2005) 389–405 391

scribe the program structure and general application
possibilities of this concept in ecological modelling in
detail.

To investigate movement patterns, dispersal and re-
sponses to landscape heterogeneity we adapted the
basic concept of an individual-based model to repre-
sent the life history of ground beetles. The implemen-
tation depicts single individuals with their behaviour
relevant for dispersal. The class as a central compo-
nent of the model structure describes the character-
istics of the modelled organisms. The design of this
class corresponds to the general structure developed
in the biocoenotic modelling group in the Bornhöved
lake ecosystem research project(Breckling et al., this
volume; Fr̈anzle et al., in press.). A further class com-
pleting the generic set-up refers to the environment. It
contains e.g. information on the spatial layout (espe-
cially grid maps representing different habitat or land-
scape characteristics) or meteorological data and their
update processes.

Based on species-specific requests this generic mod-
elling framework is flexible and can be adjusted to
many ecological scenarios as demonstrated by our
models. The following description of the two models
is based on this general layout.

2.2. Movement modules

The majority of empirical data on distribution pro-
cesses of epigeic beetles is based on results from pit-
fall trap catches(Baars, 1979; den Boer et al., 1986;
Spence and Niemelä, 1994). In rare cases observations
of individuals could be used for drawing conclusions
on movement characteristics(Mascanzoni and Wallin,
1986; Wiens and Milne, 1989; Riecken and Raths,
1996; Jopp and Breckling, 2001). These investigations
have often used telemetric devices to track individuals
at fixed intervals for longer periods. Basic properties
derived from these data are the distribution of step-
length and turning angles for the measured temporal
intervals (Fig. 1). This discretisation process provides
the fundamental data and algorithms for the implemen-
tation of movement patterns in both models. The dis-
cretely modelled movement steps are thus composed
by steps with defined lengths and turning angles mea-
sured against the previous movement vector(Turchin,
1998).

Fig. 1. Discretisation of a movement pattern. The beetle’s position
is recorded at fixed time intervals, and the distance between two
positions, and the turning angle in relation to the previous direction.

The two models differ in the implementation of
these algorithms and the embedding into a com-
plex behavioural repertoire, and by the representa-
tion of the habitat quality. These additional features
result in the respective application ranges of either
model (for detailed description see Sections2.2.1 and
2.2.2).

2.2.1. Local spatial resistance and dispersal: the
Levy model

In 1957 Heydemann established the concept of local
spatial resistance (LSR) which is an important param-
eter describing how the environment influences the
movements of invertebrates. This factor is influenced
by the density of vegetation and other micro-landscape
elements, such as gravel stones or litter. It describes the
reduction of the dispersal velocity of epigeic inverte-
brates that move through an arrangement of landscape
elements(Heydemann, 1957). The role of small-scale
vegetation density and heterogeneity in determining
the movement characteristics of epigeic beetles has
been demonstrated byCrist et al. (1992)who studied
Eleodes(Coleoptera: Tenebrionidae) in a short-grass
prairie landscape. These authors describe the beetle
movements being strongly influenced by vegetation
structure, with net displacements highest on bare
ground and in different grass-cover types, and lowest
in cactus and shrub. In similar experimentsWiens and
Milne (1989)andWiens et al. (1997)found that the
distance moved per time unit was longer when beetles
moved over bare ground than among grass, which

(from Jopp & Reuter, 2005)



How the movement can be quantified (contd.)

We assume that the individual movement is a random process.

The movement along a broken line can then be quantified by
probability distribution of steps and turning angles.

For simplicity, we will focus on the movement in 1D space;
hence we only consider distribution of step length, say p(r).



How the movement can be quantified (contd.)

Movement is usually split into periods of motion (or fast
displacement), aka bouts, and rest (or slow displacement):

 74
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Figure 5.1 a) Typical aphid tracks in a Petri dish. The thicker the line the slower an 

aphid moved. Globules show the spots where aphids stopped for some time. It can be 

seen that the paths are not homogeneous – fast movement is often interrupted by slow 

movement (or a complete stop). Most of long stops occurred at the boundary, some 

stops occurred at the paths crossing, others occurred without any obvious reason. b) An 

example of an aphid path with alternating periods of fast and slow movement. The 

horizontal line indicates the threshold we employed between movement and non-

movement. 

Model fitting 

Three models were fitted to the distribution of the moving times – the power law 

(expected for Levy walk), the exponential (expected for random walk) and the truncated 

power law – using a maximum likelihood method (e.g. Hilborn & Mangel 1997) and the 

performance of the models was compared using Akaike weights (Burnham & Anderson 

2002).  

Log-likelihood functions were derived for the range starting with xmin and going 

to infinity (assuming that values higher than the recorded ones were possible). Since the 

data were binned with 1 s bin width, the continuous distributions were converted to the 

discrete ones so that the value for the bin j was obtained by integrating over j-0.5 to 

j+0.5.  

Log-likelihood function for the power law distribution 
The pdf of the power law model is  

The duration of uninterrupted movement is exponentially
distributed (e.g. Petrovskii et al. 2011 PNAS 108: 8704-8707)



How the movement can be quantified (contd.)

Depending on the context, there are two different ways to
describe the movement:

� 1. Dispersal kernel – the probability density to find the
“next” position of the dispersing animal (after a given time)

This is useful when the focus is on the long-distance dispersal
(i.e. long jumps).

Frequency of long distance dispersal events is given by the
large-distance asymptotics. The two important alternatives are:

p(r) ∼ e−αr or faster,

p(r) ∼ r−µ where µ > 1.



Examples of dispersal kernels

Left: the Gaussian distribution, right: “back-to-back” exponential

The rate of decay at the tail of the kernel is important, cf. “thin
tails” vs “fat tails” (exponentially bounded vs power law decay)



For long-distance dispersal, both collecting data and their
statistical analysis are challenging, so the question “fat or thin”
remains controversial; for instance:

I Dispersal of albatrosses (Viswanathan et al. 1996):
fat-tailed with a power-law decay (µ = 1.7)

I ...was later re-analyzed by Edwards et al. (2007) to reveal
a thin (exponential) tail

I Dispersal of mussels on the sea bed (de Jager et al. 2011):
fat-tailed with µ = 2

I ...was later proved to be better described by a
composite-exponential kernel (Jansen et al. 2012)
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How the movement can be quantified (contd.)

� 2. Alternatively, one can think about the rate of dispersal,
e.g. dependence of the mean squared displacement
(MSD) on time.

Typically,
< (x(t)− x0)

2 >∼ tH

where H = 1
2 for the standard diffusion (Brownian motion),

H > 1
2 for the “superdiffusion”.

The two approaches (dispersal kernel vs MSD) are thought to
be related; in general, the dispersal rate is higher for a fatter tail.

We will show that it is not necessarily so.



Why move? - there must be a reason...

Reducing the movement pattern to the properties of the kernel
is far too formal: What are the processes ‘behind the kernel’?

The answer is likely to be scale-dependent.

Consider the ‘microscale’ of a single step:

Assumption 1: the animal only change its velocity when there is
a reason for this (looking for food, avoiding predators etc.)

Assumption 2: the animal change its speed as a response to
external (environmental) clues or signals



Generic model

We describe the movement as a sequence of bouts (steps). A bout
ends (and the next bout starts) when the animal receives a signal
from the environment.

Let the signals are distributed in time homogeneously. This results in
the Poisson distribution: the probability that an animal receives at
least one cue during the time t is

Pt(ω) = 1− e−ωt ,

where ω is the mean number of cues per unit time.

The probability density of bout duration:

ψ (t) = ωe−ωt .

Hence, ω = 1/ < t > where < t > is the mean time between the
subsequent signals.



Upon receiving a signal, the animal reacts by exerting a
force. The corresponding acceleration changes the
movement velocity.

Scenario 1:

Upon receiving a signal, the animal changes its movement by
choosing a new value of the velocity v , which we consider to be
a random variable described by a certain pdf φ(v).

We consider velocity and bout duration to be statistically
independent.



Let tk is the duration of the k th bout, vk is the velocity along the k th
bout, and yk the animal’s position at the and of the k th bout. Then,

yk = yk−1 + vk tk (k = 1,2, . . . ) so that yk =
k∑

n=1

vntn .

For an arbitrary t (i.e. between the signals):

k−1∑
n=1

tn < t <
k∑

n=1

tn,

we obtain

xk (t) = yk−1 + vk t̃k =
k−1∑
n=1

vntn + vk

(
t −

k−1∑
n=1

tn

)
,

where xk (t) is the position of the animal during the k th bout.



Scenario 1 (contd.)

For an arbitrary φ(v), calculations are not possible.

We consider two special cases, that is

φG (v) =
e−

v2

2σ2

√
2πσ2

and φL (v) =
e−

|v|
2α

2α
.

Then it appears possible to calculate the moments < x2n > of
the dispersal kernel

(Tilles & Petrovskii 2016, J. Math. Biol., in press)



How animals move along? Exactly solvable model of. . .

ρk (x, t |tk−1) =
exp

[
− x2

2σ 2�2
k (t,tk−1)

]

√
2πσ 2�2

k (t, tk−1)

, (10)

where tk = (t1, ..., tk), and the function �2
k (t, tk−1), associated to the variance, is

obtained directly from (8) as

�2
k (t, tk−1) =

k−1∑

n=1

t2n +
(
t −

k−1∑

n=1

tn

)2

(11)

(note that we have dropped the k index from the variable xk to put it on the probability
function ρk). In order to obtain the unconditioned contribution ρk (x, t), we need to
sum Eq. (10) over all possible bout durations. The sum of all periods up to tk−1 is
constrained on the interval (0, t), and the summation over all possible configurations
is obtained from the multidimensional integral

∫
Dtk−1 ≡

∫ t

0
dt1

∫ t−t1

0
dt2 . . .

∫ t−∑k−2
n=1 tn

0
dtk−1. (12)

For the last bout period tk we should set the integration limits in order tomake it superi-
orly unbounded and to assure that the observational time t lies inside the domain. Since
the conditional probability (10) does not depend on the last bout duration tk , we may
compute its contribution (integrate) directly, and when we consider the probabilities
from all duration we may write

k−1∏

j=1

ψ
(
t j
) ∫ ∞

t−∑k−1
n=1 tn

dtkψ (tk) = ωk−1e−ωt , (13)

which leads to the unconditioned probability density

ρk (x, t) = ωk−1e−ωt
∫

Dtk−1ρk (x, t |tk−1) . (14)

Equation (14) is not analytically solvable, but wemay extract all statistical information
from this system through the moments of the distribution, which are obtained via

〈x2n (t)〉 =
∞∑

k=1

∫ ∞

−∞
x2nρk (x, t) dx = (2n)!

2nn! σ 2ne−ωt
∞∑

k=1

ωk−1Hn,k (t) , (15)

where we use the following notation:

Hn,k (t)=
∫

Dtk−1�
2n
k (t, tk−1)=

∫
Dtk−1

⎡

⎣
k−1∑

m=1

t2m+
(
t−

k−1∑

m=1

tm

)2⎤

⎦
n

. (16)

123
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where Pn (k) are polynomials of order n − 1. A general expression for these polyno-
mials is not available, but the first few ones can be readily calculated:

P1 (k) = 1, (23a)

P2 (k) = 5 + k, (23b)

P3 (k) = 74 + 15k + k2, (23c)

P4 (k) = 2118 + 371k + 30k2 + k3, (23d)

P5 (k) = 97944 + 14290k + 1115k2 + 50k3 + k4. (23e)

Now the summations in Eq. (15) are easily doable, and the exact expressions for the
moments of the system may be written as

〈x2n (t)〉 = (2n)!
2nn!

(σ

ω

)2n [Q1,n (ωt) + e−ωtQ2,n (ωt)
]
, (24)

where Q1,n (ωt) and Q2,n (ωt) are polynomials in ωt , defined by

Q1,1 (y) = 2 (y − 1) , (25a)

Q1,2 (y) = 4
(
y2 − 6

)
, (25b)

Q1,3 (y) = 8
[
y3 + 3

(
y2 − 40

)]
, (25c)

Q1,4 (y) = 16
[
y4 + 8

(
y3 + 6y2 − 567

)]
, (25d)

Q1,5 (y) = 32
[
y5 + 15

(
y4 + 12y3 + 108y2 − 17856

)]
, (25e)

and

Q2,1 (y) = 2, (26a)

Q2,2 (y) = 8
(
y2 + 3y + 3

)
, (26b)

Q2,3 (y) = 4
(
5y4 + 32y3 + 114y2 + 240y + 240

)
, (26c)

Q2,4 (y) = 16

15

[
37y6 + 12

(
31y5 + 195y4 + 875y3

+2775y2 + 5670y + 5670
)]

, (26d)

Q2,5 (y) = 4

21

{
353y8 + 24

[
204y7 + 7

(
266y6 + 1856y5 + 10155y4 + 42840y3

+132300y2 + 267840y + 267840
)]}

. (26e)

Figure 2 shows the perfect match between these analytical expressions and the
results obtained from Monte Carlo simulations of the original system. To compare
these results with the ones obtained from the Goldstein–Kac (GK) telegraph process,
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contributions of different number of bouts, as in Eq. (3), we canwrite the characteristic
function of each of these contributions as the product of the characteristic functions
from each variable vntn present in Eq. (8). This approach will work as long as the
original velocity distribution admits a characteristic function representation, and as
for the Laplace distribution we have 1/(1+ α2z2), the characteristic function for this
Laplace composed case may be written as

�L (z, t) = e−ωt
∞∑

k=1

ωk−1
∫

Dtk−1

k∗∏

n=1

1

1 + α2z2t2n

= e−ωt
∞∑

m=0

(−1)m (αz)2m
∞∑

k=1

ωk−1
∫

Dtk−1�m,k (t, tk−1) . (45)

On the first part, the upper bound index k∗ is just a short notation to remind that
the summations should go up to the value k and followed by imposing the constraint
tk → t −∑k−1

n=1 tn , as previously discussed. Once we expand this expression around
z = 0, we obtain the functions�m,k (t, tk−1) shown on the second part, which are just
polynomials in the bout durations tn . Just as in the Gaussian case, we are not going to
compute all the terms, but just focus on the first three ones:

�1,k (t, tk−1) =
k∗∑

i=1

t2i , (46a)

�2,k (t, tk−1) =
k∗∑

i=1

t4i +
k∗∑

i=1

k∗∑

j=i+1

t2i t
2
j , (46b)

�3,k (t, tk−1) =
k∗∑

i=1

t6i +
k∗∑

i=1

k∗∑

j=i+1

t2i t
2
j

(
t2i + t2j

)
+

k∗∑

i=1

k∗∑

j=i+1

k∗∑

l= j+1

t2i t
2
j t

2
l .

(46c)

To compute the bout durations integrals in Eq. (45) wemay resort to the same approach
used before, in which for a given m we use the result from the first integrals to infer
the general behavior as a function of k. As the first multidimensional integral of �1,k
is exactly the same asH1,k shown in Eq. (16), we only need to compute the next two:

∫
Dtk−1�2,k (t, tk−1) = 2k (k + 11)

(k + 3)! tk+3, (47)

∫
Dtk−1�3,k (t, tk−1) = 4k

(
k2 + 33k + 506

)

3 (k + 5)! tk+5. (48)

Now it is just a matter of rewriting the summation into known functions to obtain the
series expansion of the characteristic function, and when we compare it to the general
relation
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�L (z, t) =
∞∑

m=0

(−1)m 〈x2m (t)〉L
(2m)! z2m, (49)

it becomes easy to determine the statistical moments of the system as

〈x2 (t)〉L = 4
(α

ω

)2 (
ωt − 1 + e−ωt) , (50a)

〈x4 (t)〉L = 48
(α

ω

)4 [
ω2t2 + 6ωt − 24 + e−ωt

(
5ω2t2 + 18ωt + 24

)]
, (50b)

〈x6 (t)〉L = 240
(α

ω

)6 [
4
(
ω3t3 + 21ω2t2 + 270ωt − 1830

)

+ e−ωt
(
79ω4t4 + 592ω3t3 + 2496ω2t2 + 6240ωt + 7320

)]
.

(50c)

If, in order to make the Laplace and Gaussian distributions comparable, we consider
the relation between the distribution parameters as α = σ/

√
2 (to ensure that both

distribution have the same variance), then 〈x2〉L obviously shows the dependence on
time exactly the same as in the previous case of the normal distribution; see Eq. (18).
However, it is readily seen that all the higher moments are different from the previous
case given by Eqs. (24–26).

As Fig. 5 (left) shows the perfect agreement of these equations to the MC results,
we may proceed to compute the asymptotic values of the cumulants,

κL ,2 (t) 	 4
(α

ω

)2
(ωt − 1) ,

κL ,4 (t) 	 48
(α

ω

)4
(8ωt − 25) ,

κL ,6 (t) 	 1920
(α

ω

)6
(183ωt − 952) , (51)

which allows us to obtain an approximate expression for the dispersal function simply
as the inverse Fourier transform,

ρL (x, t) ≈ 1

2π

∫ ∞

−∞
cos (xz) exp

[
−κL ,2 (t)

2! z2 + κL ,4 (t)

4! z4 − κL ,6 (t)

6! z6
]
dz.

(52)
Also in this case the cumulants are linear functions of time t , so we already know
that the probability distribution may be asymptotically approximated by a Gaussian
diffusion

ρL (x, t) 	
√

ω

8πα2t
e
− ωx2

8α2 t , (53)

where the diffusion coefficient is connected to the model parameters via the relation

DL (α, ω) = 4α2

ω
. (54)
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Finally, we obtain
〈x2 (t)〉G =

2σ2

ω2

(
ωt − 1 + e−ωt) ,

so that

〈x2(t)〉G ∼ t2 for t � 1
ω

and 〈x2(t)〉G ∼ t for t � 1
ω
.

For the higher moments:
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In the large-time limit, the pdf of animal location (dispersal
kernel) becomes

ρG (x , t) '
√

ω

4πσ2t
e−

ωx2

4σ2t

although at any finite time it has a somewhat fatter tail:
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Scenario 2:

Upon receiving a signal, the animal changes its movement by
choosing an increment to the velocity, that is

v → v + ξ,

where ξ is a random variable described by a certain pdf φ(ξ).

In this case, we obtain

〈x2(t)〉Gc =
σ2t2

3
(3 + ωt)

so that

〈x2(t)〉Gc ∼ t2 for t � 1
ω

and 〈x2(t)〉Gc ∼ t3 for t � 1
ω
,

hence super-ballistic spread.



Velocity changes due to the acceleration...

Let τ be the “reaction time”, i.e. time over which the animal is
exerting force.

Scenarios 1 and 2 correspond to the case τ � 1
ω :

ٍ  ٍ  

ٍ  

ٍ  

ٍ  

ٍ +τ 

 

ٍ ٍ +τ 



Scenario 3: 1
ω � τ

The animal reacts to a signal by moving with a constant
acceleration until the next signal is received.

ٍ  ٍ  

ٍ  

ٍ

ٍ  

ٍ  

ٍ +τ 

ٍ  

ٍ  

 

The acceleration is a random variable described by a pdf φ(a).



Let us consider

φGa (a) =
e−

a2

2σ2

√
2πσ2

.

In this case, we obtain

〈x2(t)〉Ga =
σ2

3ω4

[
6− ω2t2 (3− 2ωt)

]
− 2σ2

ω4 e−ωt (1 + ωt) ,

so that

〈x2(t)〉Ga ∼ t4 for t � 1
ω

and 〈x2(t)〉Ga ∼ t3 for t � 1
ω
,

hence the animal is moving super-ballistically

(Tilles & Petrovskii 2015, Ecol. Compl. 22: 86-92.)



...but the dispersal kernel is clearly thin-tailed:
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(Dispersal kernel at a given time obtained by Monte Carlo simulations for different

acceleration distributions: blue for the Gaussian, green for the Laplace distribution)



Limitations and extensions

Scenarios 2 and 3 predict that the movement speed increases
with time, apparently to some unrealistically high value.

In particular, in Scenario 2 we have

vk =
k∑

n=1

ξn,

so that
< v2 > (T ) ∼ T ,

where T is the period of uninterrupted movement

However, here we recall that the time of uninterrupted
movement is exponentially distributed.

Therefore < v2 > has a well-defined, finite value.



A glance at (some) available data

We are interested in the rate of dispersal as given by

< x2 > (t) ∼ tH

where H = 1 corresponds to the standard diffusion.

I Albatrosses (Viswanathan et al. 1996): H ≈ 1.7

I Spider monkeys (Ramos-Fernandez et al. 2004): H ≈ 1.7

I Magellanic penguin (Sims et al. 2008): H ≈ 2.3

I Leatherback turtle (Sims et al. 2008): H ≈ 2.5.

Our model predicts that 2 ≤ H ≤ 3.



Discussion and conclusions

• Superdiffusion can be a consequence of the animal’s
behavioral response to environmental clues or signals –
effectively, to the environmental stochasticity

• Behaviorally induced superdiffusion does not require a
fat-tailed dispersal kernel

• Fat-tailed dispersal kernel can appear as a result of
variation in individual movement traits in a population of
diffusively moving individuals (Petrovskii & Morozov 2009;
Petrovskii et al. 2011)
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