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Dispersal in ecology

Dispersal is redistribution of a given population in space due to
the motion of its individuals
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Importance of dispersal

Dispersal is the factor that makes ecology essentially
spatial.

¢ Biological invasions and spread of infectious diseases

¢ Synchronization of population dynamics in a fragmented
habitat

The dynamics of spatial and non-spatial systems is often
qualitatively different, hence the understanding of dispersal
patterns is crucial for the understanding of ecological
dynamics.

Dispersal of a population takes place through movement of
its individuals. Hence, a good understanding of the
individual (animal) movement is necessary



Individual animal movement path is often quite complicated...




Individual animal movement path is often quite complicated...
because it normally arises as a result of interaction between
internal states of the animal and the landscape structure
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Complexity of individual movement

Individual animal movement has several movement modes
involving different spatial and temporal scales.

We will focus on the intermediate scale of foraging in a
homogeneous environment (e.g. between feeding grounds),

ultimately reducing it to the ‘microscale’ of a single step or an
elementary movement decision.



How the movement can be quantified?

We assume that a curvilinear path can be mapped into a
broken line (e.g. due to discreteness of observations):
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How the movement can be quantified (contd.)

We assume that the individual movement is a random process.

The movement along a broken line can then be quantified by
probability distribution of steps and turning angles.

For simplicity, we will focus on the movement in 1D space;
hence we only consider distribution of step length, say p(r).



How the movement can be quantified (contd.)

Movement is usually split into periods of motion (or fast
displacement), aka bouts, and rest (or slow displacement):
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The duration of uninterrupted movement is exponentially
distributed (e.g. Petrovskii et al. 2011 PNAS 108: 8704-8707)



How the movement can be quantified (contd.)

Depending on the context, there are two different ways to
describe the movement:

1. Dispersal kernel — the probability density to find the
“next” position of the dispersing animal (after a given time)

This is useful when the focus is on the long-distance dispersal
(i.e. long jumps).

Frequency of long distance dispersal events is given by the
large-distance asymptotics. The two important alternatives are:

p(r) ~ e  orfaster,
p(ry ~ r ¢ where > 1.



Examples of dispersal kernels
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Left: the Gaussian distribution, right: “back-to-back” exponential

The rate of decay at the tail of the kernel is important, cf. “thin
tails” vs “fat tails” (exponentially bounded vs power law decay)



For long-distance dispersal, both collecting data and their
statistical analysis are challenging, so the question “fat or thin”
remains controversial; for instance:

» Dispersal of albatrosses (Viswanathan et al. 1996):
fat-tailed with a power-law decay (1 = 1.7)
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For long-distance dispersal, both collecting data and their
statistical analysis are challenging, so the question “fat or thin
remains controversial; for instance:

”

» Dispersal of albatrosses (Viswanathan et al. 1996):
fat-tailed with a power-law decay (1 = 1.7)

» ...was later re-analyzed by Edwards et al. (2007) to reveal
a thin (exponential) tail

» Dispersal of mussels on the sea bed (de Jager et al. 2011):
fat-tailed with © = 2

» ...was later proved to be better described by a
composite-exponential kernel (Jansen et al. 2012)



How the movement can be quantified (contd.)

2. Alternatively, one can think about the rate of dispersal,
e.g. dependence of the mean squared displacement
(MSD) on time.

Typically,
< (x(t) = x0)2 >~ 1

where H = % for the standard diffusion (Brownian motion),
H > I for the “superdiffusion”.

The two approaches (dispersal kernel vs MSD) are thought to
be related; in general, the dispersal rate is higher for a fatter tail.

We will show that it is not necessarily so.



Why move? - there must be a reason...

Reducing the movement pattern to the properties of the kernel
is far too formal: What are the processes ‘behind the kernel’?

The answer is likely to be scale-dependent.

Consider the ‘microscale’ of a single step:

Assumption 1: the animal only change its velocity when there is
a reason for this (looking for food, avoiding predators etc.)

Assumption 2: the animal change its speed as a response to
external (environmental) clues or signals



Generic model

We describe the movement as a sequence of bouts (steps). A bout
ends (and the next bout starts) when the animal receives a signal
from the environment.

Let the signals are distributed in time homogeneously. This results in
the Poisson distribution: the probability that an animal receives at
least one cue during the time t is

Piw)=1-—e"",
where w is the mean number of cues per unit time.
The probability density of bout duration:

Y (1) = we ™!

Hence, w = 1/ < t > where < t > is the mean time between the
subsequent signals.



Upon receiving a signal, the animal reacts by exerting a
force. The corresponding acceleration changes the
movement velocity.

Scenario 1;:

Upon receiving a signal, the animal changes its movement by
choosing a new value of the velocity v, which we consider to be
a random variable described by a certain pdf ¢(v).

We consider velocity and bout duration to be statistically
independent.



Let # is the duration of the kth bout, vk is the velocity along the kth
bout, and y, the animal’s position at the and of the kth bout. Then,

k
Yo=Ykt + ke (k=1,2,...) sothat  yx=> vaty.
n=1

For an arbitrary t (i.e. between the signals):

k—1 k

dta<t<d

n=1 n=1
we obtain

k—1 k—1
Xk(t) = Ykt + Vil = Valn + Vi (l‘ = tn) 7

n=1 n=1

where x(t) is the position of the animal during the kth bout.



Scenario 1 (contd.)

For an arbitrary ¢(v), calculations are not possible.

We consider two special cases, that is

se=0 and )=

Then it appears possible to calculate the moments < x2" > of
the dispersal kernel

(Tilles & Petrovskii 2016, J. Math. Biol., in press)



How animals move along? Exactly solvable model of
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(note that we have dropped the k index from the variable x to put it on the probability
function pi). In order to obtain the unconditioned contribution p (x. 1), we need to
sum Eq, (10) over all possible bout durations. The sum of all periods up to 1 is
constrained on the interval (0, 1), and the summation over all possible configurations
is obtained from the multidimensional integral
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the conditional probability (10) does not depend on the last bout duration ;. we may
compute its contribution (integrate) directly, and when we consider the probabilities
from all duration we may write
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How animls move slong? Exactly solvable model of.

where P, (k) are polynomials of order  — 1. A general expression for these polyno-
mials is not available, but the first few ones can be readily calculated:
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Now the summations in Eq. (15) are easily doable, and the exact expressions for the
‘moments of the system may be written as
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Figure 2 shows the perfect match between these analytical expressions and the
results obtained from Monte Carlo simulations of the original system. To compare
these results with the ones obtained from the Goldstein-Kac (GK) telegraph process,
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How animals move along? Exactly solvable model of
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On the first part, the upper bound index k* is just a short notation to remind that
hould g0 up to the value k and followed by imposing the constraint
. as previously discussed. Once we expand this expression around
2= 0, we obtin the functions G (1. ) shown on the second part, which re just
‘polynomials in the bout durations f,. Just as in the Gaussian case, we are not going to
compute allthe terms, but just focus on the first three ones:

(6a)

(46b)

O34 (1.t

£ooee
DXEDIDN /36(6+'§)+Z Z Z s
==Y =

Jze et

(46¢)

used before, in which for a given m we use the result from the fist integrals to infer
the general behavior as a function of &. As the first multidimensional integral of )
is exactly the same as H1 & shown in Eq, (16), we only need to compute the next two:
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Now it just a matter of rewriting the summation into known functions to obain the
series expansion of the characteristic function, and when we compare it to the general
relation
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it becomes easy to determine the statistical moments of the system as
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If. in order to make the Laplace and Gaussian distributions comparable, we consider
the relation between the distribution parameters as o = o/v/2 (to ensure that both
distibution have the same variance), then (+). obviously shows the dependence on
time exactly the same as in the previous case of the normal distribution: see Eq. (18).
However, its readily seen that all the higher moments are different from the previous
case given by Eqs. (24-26)

As Fig. 5 (left) shows the perfect agreement of these equations to the MC results,
we may proceed (o compute the asymptotic values of the cumulants,
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Also in this case the cumulants are linear functions of time 1. so we already know
that the probabiliy distribution may be asymptotically approximated by a Gaussian
diffusion )
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where the diffusion coefficient is connected to the model parameters via the relation
i
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Finally, we obtain

so that
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In the large-time limit, the pdf of animal location (dispersal

kernel) becomes
[w  _wd
X, t) ~ e 402t

although at any finite time it has a somewhat fatter tail:
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Scenario 2:

Upon receiving a signal, the animal changes its movement by
choosing an increment to the velocity, that is

V—Vv+E,

where ¢ is a random variable described by a certain pdf ¢(¢&).

In this case, we obtain

(206, = T 3+t

so that
1
(X3(t)) g, ~ 12 for t<<1a and (x?(t))g, ~ 2 for t> =

hence super-ballistic spread.



Velocity changes due to the acceleration...

Let T be the “reaction time”, i.e. time over which the animal is
exerting force.

Scenarios 1 and 2 correspond to the case 7 < %:
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Scenario 3: 1 <7

The animal reacts to a signal by moving with a constant
acceleration until the next signal is received.

a

as - - e

I3
t1 2] titt t

a; .

The acceleration is a random variable described by a pdf ¢(a).



Let us consider
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hence the animal is moving super-ballistically
(Tilles & Petrovskii 2015, Ecol. Compl. 22: 86-92.)



...but the dispersal kernel is clearly thin-tailed:
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(Dispersal kernel at a given time obtained by Monte Carlo simulations for different
acceleration distributions: blue for the Gaussian, green for the distribution)



Limitations and extensions
Scenarios 2 and 3 predict that the movement speed increases
with time, apparently to some unrealistically high value.

In particular, in Scenario 2 we have

k
Vi = ng
n=1
so that
<v2>(T)~T,

where T is the period of uninterrupted movement

However, here we recall that the time of uninterrupted
movement is exponentially distributed.

Therefore < v2 > has a well-defined, finite value.



A glance at (some) available data

We are interested in the rate of dispersal as given by
<x2>(t)~tH

where H = 1 corresponds to the standard diffusion.

» Albatrosses (Viswanathan et al. 1996): H ~ 1.7
» Spider monkeys (Ramos-Fernandez et al. 2004): H ~ 1.7
» Magellanic penguin (Sims et al. 2008): H ~ 2.3

» Leatherback turtle (Sims et al. 2008): H ~ 2.5.

Our model predicts that 2 < H < 3.



Discussion and conclusions

e Superdiffusion can be a consequence of the animal’s
behavioral response to environmental clues or signals —
effectively, to the environmental stochasticity

e Behaviorally induced superdiffusion does not require a
fat-tailed dispersal kernel



Discussion and conclusions

e Superdiffusion can be a consequence of the animal’s
behavioral response to environmental clues or signals —
effectively, to the environmental stochasticity

e Behaviorally induced superdiffusion does not require a
fat-tailed dispersal kernel

o Fat-tailed dispersal kernel can appear as a result of
variation in individual movement traits in a population of
diffusively moving individuals (Petrovskii & Morozov 2009;
Petrovskii et al. 2011)
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Thank you!





