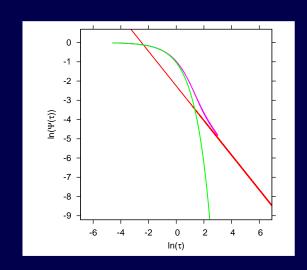
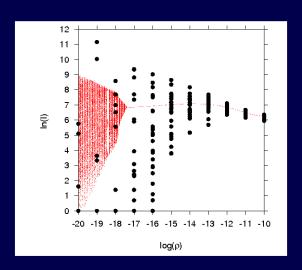
# Power law jumps and power law waiting times, fractional calculus and human mobility in epidemiological systems





#### Nico Stollenwerk

Mathematical Biology and Statistics Group

Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAF-CIO) Univ. Lisboa

## Simplest epidemiological processes

epidemic process: SIS

$$egin{array}{c} S+I & \stackrel{eta}{\longrightarrow} I+I \ I & \stackrel{lpha}{\longrightarrow} S \end{array}$$

epidemic process: SIR

$$egin{array}{c} S+I \stackrel{eta}{\longrightarrow} I+I \ I \stackrel{\gamma}{\longrightarrow} R \ R \stackrel{lpha}{\longrightarrow} S \end{array}$$

# Susceptible-Infected-Recovered epidem.: SIR

$$egin{array}{c} S+I & \stackrel{eta}{\longrightarrow} I+I \ I & \stackrel{\gamma}{\longrightarrow} R \ R & \stackrel{lpha}{\longrightarrow} S \end{array}$$

## gives ODE system

$$egin{aligned} rac{d}{dt}\,S &= lpha R - rac{eta}{N}\,SI \ rac{d}{dt}\,I &= rac{eta}{N}\,SI - \gamma I \ rac{d}{dt}\,R &= \gamma I - lpha R \end{aligned}$$

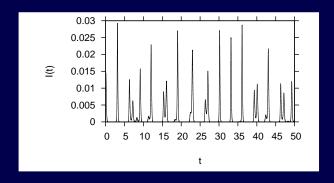
## SIR system with seasonality

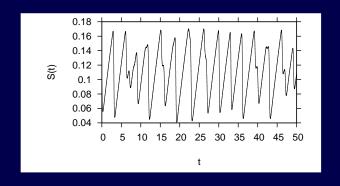
$$egin{aligned} rac{d}{dt}\,S &= lpha R - rac{eta(t)}{N}\,SI \ & rac{d}{dt}\,I \,= rac{eta(t)}{N}\,SI - \gamma I \ & rac{d}{dt}\,R \,= \, \gamma I - lpha R \end{aligned}$$

with seasonal forcing of the infection rate

$$eta(t) = eta_0 \cdot (1 + \eta \cdot cos(\omega \cdot t))$$

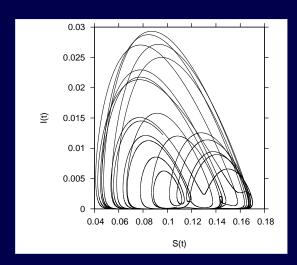
## SIR system with seasonality





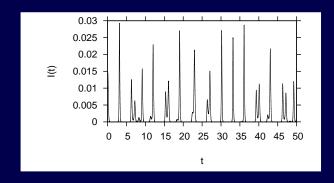
time series of I(t)

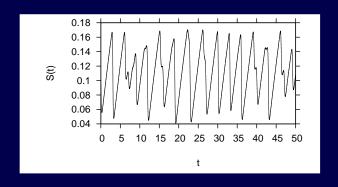
time series of S(t)



state space plot from time series I(t) versus S(t)

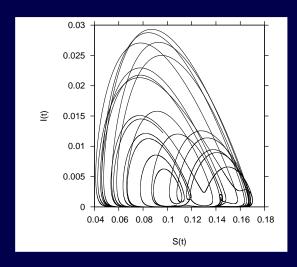
# SIR system with seasonality





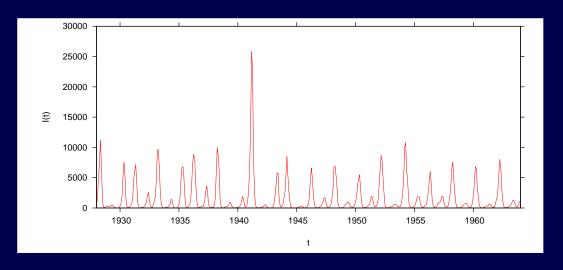
time series of I(t)

time series of S(t)

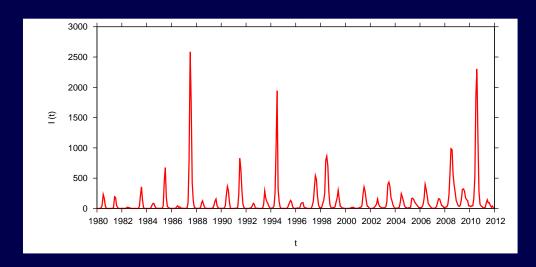


deterministic chaos

# Epidemiological systems with various qualitative features



# measles in New York City



dengue fever cases in Chiang Mai (Thailand)

Explicit multi-strain models: example: dengue fever

# Explicit multi-strain models: example: dengue fever

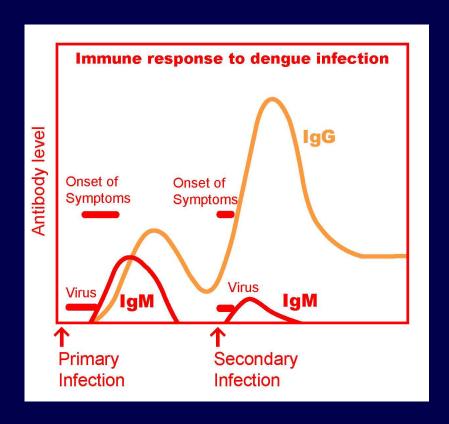
simplest example: two-strain SIR model including antibody dependent enhancement (ADE)

=> chaos only for large ADE parameter  $\phi$ 

biologically motivated extension including temporary cross immunity

=> chaos for much wider  $\phi$ -region (also for "inverse ADE")

# Antibody dependent enhancement, ADE



... and temporary cross-immunity

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{\phi_1eta_1}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{\gamma}{\longrightarrow} R_1 \ R_1 & \stackrel{lpha}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{eta_2}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{\phi_2eta_2}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{\gamma}{\longrightarrow} R \end{aligned}$$

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{oldsymbol{\phi_1}{eta_1}}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{\gamma}{\longrightarrow} R_1 \ R_1 & \stackrel{lpha}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{eta_2}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{oldsymbol{\phi_2}{eta_2}}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{\gamma}{\longrightarrow} R \end{aligned}$$

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{oldsymbol{\phi_1}{eta_1}}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{oldsymbol{\gamma}}{\longrightarrow} R_1 \ R_1 & \stackrel{oldsymbol{lpha}}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{oldsymbol{eta_2}}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{oldsymbol{\gamma}}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{oldsymbol{\gamma}}{\longrightarrow} R \end{aligned}$$

## Multi-strain model for dengue fever

$$\frac{dS}{dt} = -\frac{\beta_1}{N}S(I_1 + \phi_1 I_{21}) - \frac{\beta_2}{N}S(I_2 + \phi_2 I_{12}) + \mu(N - S)$$

$$\frac{dI_1}{dt} = \frac{\beta_1}{N}S(I_1 + \phi_1 I_{21}) - (\gamma + \mu)I_1$$

$$\frac{dI_2}{dt} = \frac{\beta_2}{N}S(I_2 + \phi_2 I_{12}) - (\gamma + \mu)I_2$$

$$\frac{dR_1}{dt} = \gamma I_1 - (\alpha + \mu)R_1$$

$$\frac{dR_2}{dt} = \gamma I_2 - (\alpha + \mu)R_2$$

$$\frac{dS_1}{dt} = -\frac{\beta_2}{N}S_1(I_2 + \phi_2 I_{12}) + \alpha R_1 - \mu S_1$$

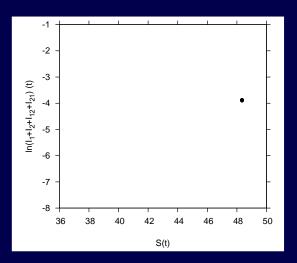
$$\frac{dS_2}{dt} = -\frac{\beta_1}{N}S_2(I_1 + \phi_1 I_{21}) + \alpha R_2 - \mu S_2$$

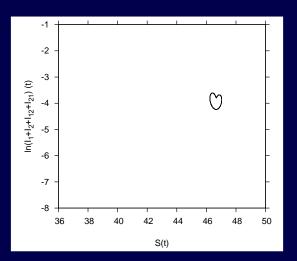
$$\frac{dI_{12}}{dt} = \frac{\beta_2}{N}S_1(I_2 + \phi_2 I_{12}) - (\gamma + \mu)I_{12}$$

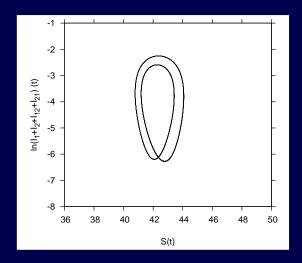
$$\frac{dI_{21}}{dt} = \frac{\beta_1}{N}S_2(I_1 + \phi_1 I_{21}) - (\gamma + \mu)I_{21}$$

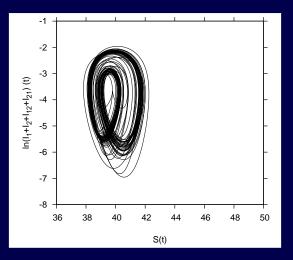
$$\frac{dR}{dt} = \gamma(I_{12} + I_{21}) - \mu R$$

# Bifurcations for changing $\phi$

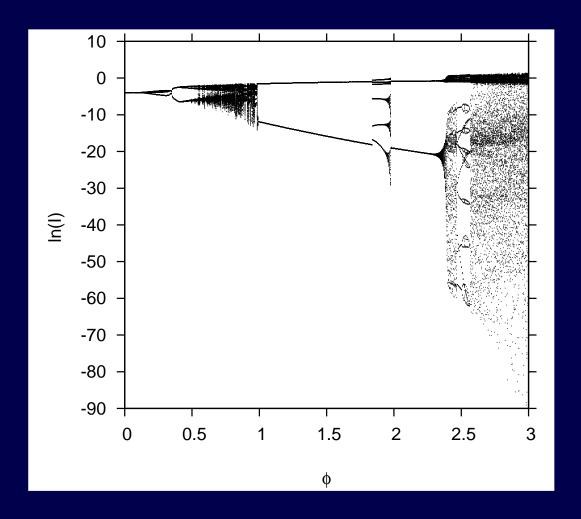








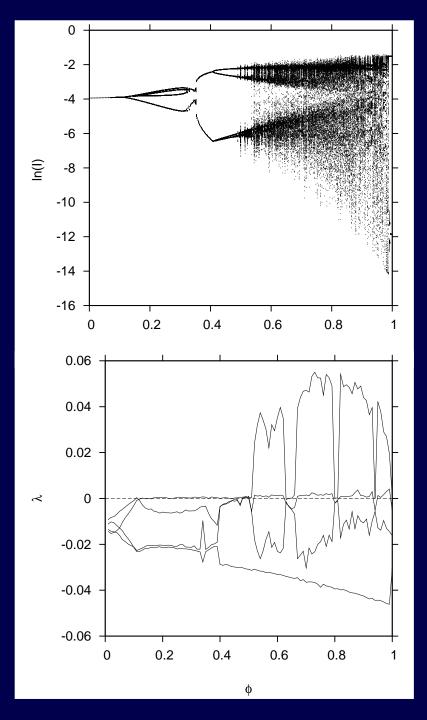
# Bifurcation diagram



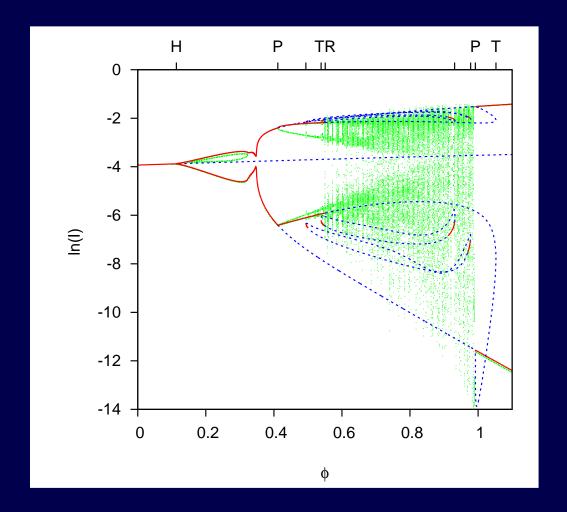
bifurcation diagram for  $\alpha=2$ 

i.e.  $\frac{1}{2}$  year of temporary cross-immunity

# Lyapunov spectrum versus bifurcation diagram

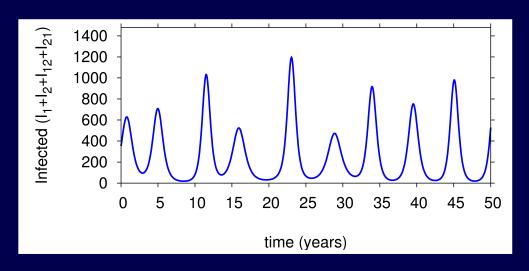


# Bifurcation analysis via continuation: AUTO

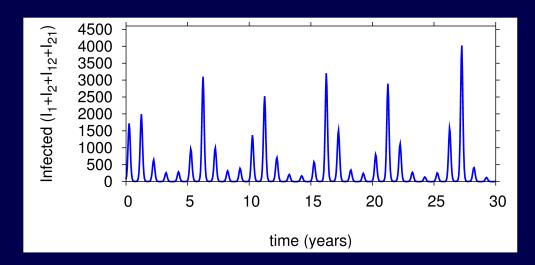


Comparing AUTO, Lyapunov spectra and numerical bifurcation diagrams: coexisting attractors found, isolas

# Including seasonality gives time series comparable to data

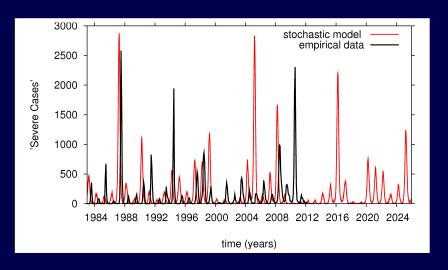


## non-seasonal model in chaotic region

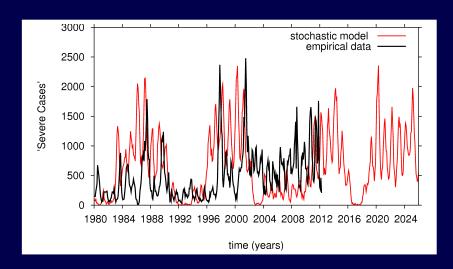


seasonality preserves chaotic pattern

# Data matching: compare simulations with data

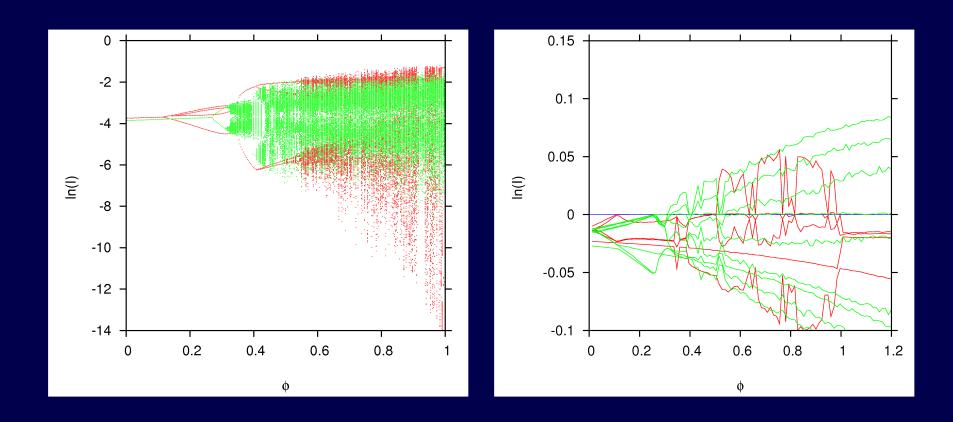


# Chiang Mai



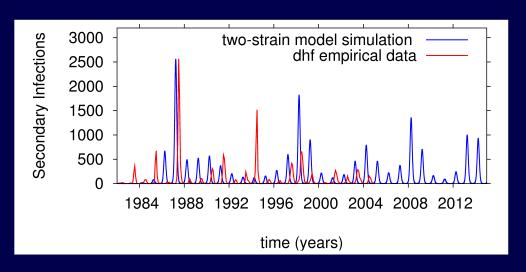
Krung Tep ("Bangkok")

# Comparing 2-strain with 4-strain models

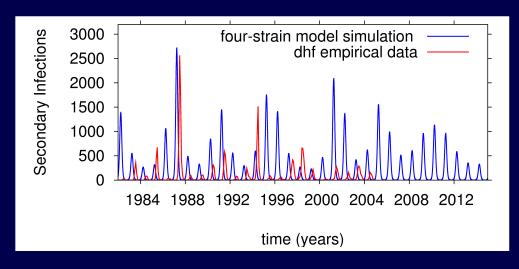


primary versus secondary infection drives the dynamics more than the exact number of strains

# Model comparison: 2-strain versus 4-strain models



## 2-strain model versus Chiang Mai data



4-strain model versus Chiang Mai data

# European Union project DENFREE: "Dengue reasearch Framework for Resisting Epidemics in Europe"



5 years project, start January 2012

together with 2 more EU project "the largest financial effort on dengue research world wide"

# European Union project DENFREE: "Dengue reasearch Framework for Resisting Epidemics in Europe"

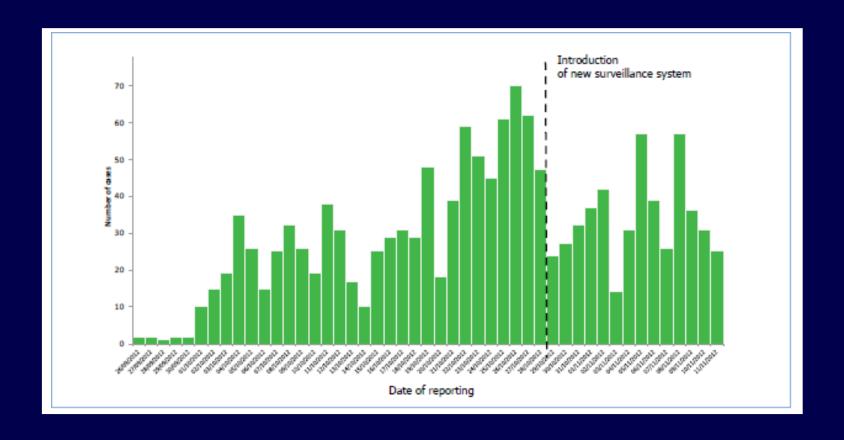


5 years project, start January 2012

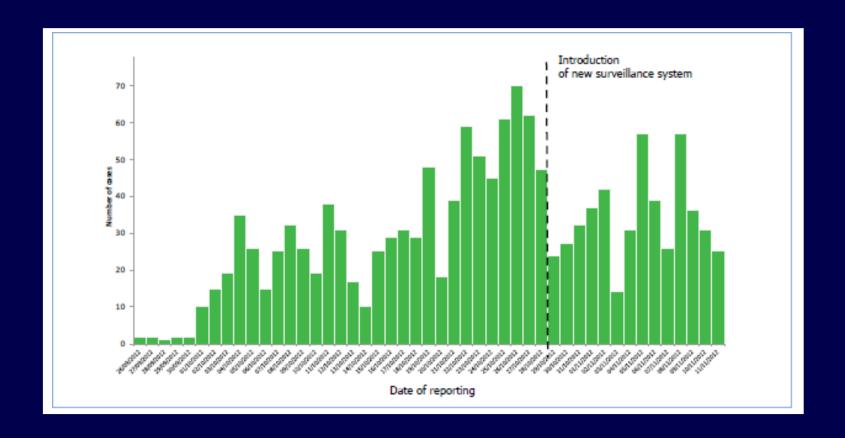
together with 2 more EU project "the largest financial effort on dengue research world wide"

CMAF is leading Work Package 4:
"Descriptic and predictive models for dengue fever"

# Dengue fever outbreak on Madeira, Portugal, 2012 more than 2000 autochtonous cases detected



# Dengue fever outbreak on Madeira, Portugal, 2012 more than 2000 autochtonous cases detected



European Center for Disease Control (ECDC):

"The largest dengue outbreak in Europe
since the 1920th in Greece"

For data analysis: stochastic modelling

#### Basic probability theory

joint probability

marginal distribution

$$p(x) = \int p(x,y) \ dy$$

Bayes' rule

$$p(x,y) = p(x|y) \cdot p(y)$$

distribution that an event  $x_0$  is given with certainty is  $p(x) = \delta(x - x_0)$  with Dirac's delta-function

$$\int_a^b f(x) \cdot \delta(x - x_0) \ dx = f(x_0)$$

for  $x_0$  between a and b

joint probability to find  $I_{n+1}$  infected at time  $t + \Delta t$  and  $I_n$  at t

$$p(I_{n+1},I_n)$$

marginal distribution to find only one of the variables no matter what the other variable does

$$p(I_{n+1}) = \sum_{I_n=0}^N p(I_{n+1}, I_n)$$

Bayes' rule gives conditional probability  $p(I_{n+1}|I_n)$  for  $I_{n+1}$  knowing for sure  $I_n$  times  $p(I_n)$ 

$$p(I_{n+1},I_n)=p(I_{n+1}|I_n)\cdot p(I_n)$$

giving a dynamic evolution equation for probabilities of infected  $p(I_n)$  at time t into  $p(I_{n+1})$  at time  $t + \Delta t$ 

$$p_{t+\Delta t}(I_{n+1}) = \sum_{I_n=0}^N p(I_{n+1}|I_n) \cdot p_t(I_n)$$

equation

$$p_{t+\Delta t}(I_{n+1}) = \sum_{I_n=0}^{N} p(I_{n+1}|I_n) \cdot p_t(I_n)$$

is a Perron-Frobenius type equation, and defines a time discrete Markov process

differential quotient gives time continous Markov process

$$rac{p_{t+\Delta t}(I) - p_t(I)}{\Delta t} pprox rac{d}{dt} \ p(I)$$

hence inserting time discrete version with  $I:=I_{n+1}$  and  $\tilde{I}:=I_n$ 

$$rac{p_{t+\Delta t}(I)-p_t(I)}{\Delta t} = \sum_{ ilde{I}=0}^{N} \left(rac{1}{\Delta t} \ p(I| ilde{I})
ight) p_t( ilde{I}) - rac{1}{\Delta t} \ p_t(I)$$

and inserting normalization of conditioned probability  $\sum_{\tilde{I}=0}^{N} p(\tilde{I}|I) = 1$  into the last term gives

$$rac{d}{dt} \, p(I) = \sum_{ ilde{I}=0}^N w_{I| ilde{I}} \, p_t( ilde{I}) - \sum_{ ilde{I}=0}^N w_{ ilde{I}|I} \, p_t(I)$$

with transition rates  $w_{I| ilde{I}} := \left( rac{1}{\Delta t} \ p(I| ilde{I}) 
ight)$ 

equation

$$rac{d}{dt} \, p(I) = \sum_{ ilde{I}=0, ilde{I}
eq I}^N w_{I| ilde{I}} \, p_t( ilde{I}) - \sum_{ ilde{I}=0, ilde{I}
eq I}^N w_{ ilde{I}|I} \, p_t(I)$$

is also called master equation and defines a time continuous state discrete Markov process

## SIS epidemic

stochastic process

$$egin{array}{ccc} S+I & \stackrel{eta}{\longrightarrow} & I+I \ I & \stackrel{lpha}{\longrightarrow} & S \end{array}$$

for variable I and S = N - I = probab. p(I, t)

$$egin{aligned} rac{d}{dt} \ p(I,t) &= rac{eta}{N} (I-1)(N-(I-1)) \ p(I-1,t) + lpha(I+1) \ p(I+1,t) \ &- \left(rac{eta}{N} I(N-I) + lpha I
ight) \ p(I,t) \end{aligned}$$

mean  $\langle I \rangle := \sum_{I=0}^{N} I \cdot p(I,t)$ 

$$rac{d}{dt} \, raket{I} = (eta - lpha) \langle I 
angle - rac{eta}{N} \langle I^2 
angle$$

and only in mean field approx.  $var := \langle I^2 \rangle - \langle I \rangle^2 \approx 0$ 

$$rac{d}{dt} \hspace{0.1cm} \langle I 
angle = rac{eta}{N} \langle I 
angle (N - \langle I 
angle) - lpha \langle I 
angle$$

we obtain closed ODE

# SIR epidemic

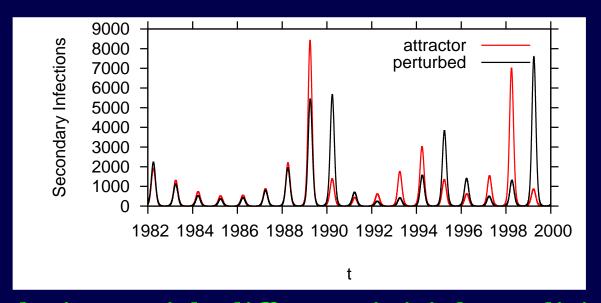
#### stochastic process

$$egin{array}{cccc} S+I & \stackrel{eta}{\longrightarrow} & I+I \ I & \stackrel{\gamma}{\longrightarrow} & R \ R & \stackrel{lpha}{\longrightarrow} & S \end{array}$$

for variables S, I and R = N - S - I => probab. p(S, I, t)

$$egin{split} rac{d}{dt} \ p(S,I,t) &= rac{eta}{N} (I-1)(S+1) \ p(S+1,I-1,t) \ &+ \gamma (I+1) \ p(S,I+1,t) \ &+ lpha (N-(S+1)-I) \ p(S+1,I,t) \ &- \left(rac{eta}{N} SI + \gamma I + lpha (N-S-I)
ight) \ p(S,I,t) \end{split}$$

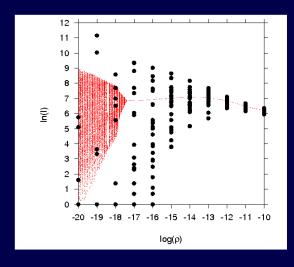
# Short term predictability, long term unpredictability

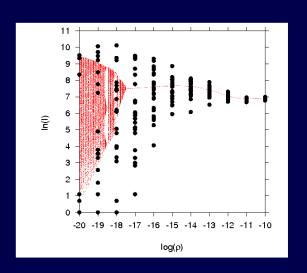


simulations with different initial conditions

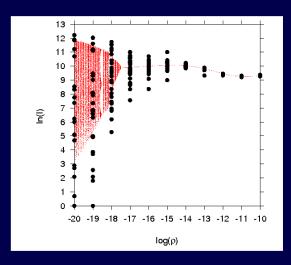
implications for data analysis: Maximum Likelihood Iterated Filtering (MIF) is choice for such systems (Ionides et al 2006/ Bretó et al. 2009)

# Parameter estimation in dengue: scaling with noise, importance of import



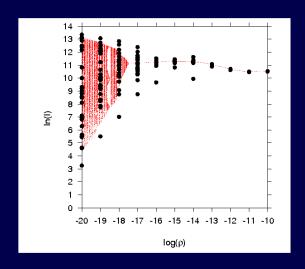


Chiang Mai  $N \approx 1$  mio.



Thailand  $N \approx 60 \text{ mio.}$ 

North  $N \approx 6$  mio



South East Asia  $N \approx 250$  mio

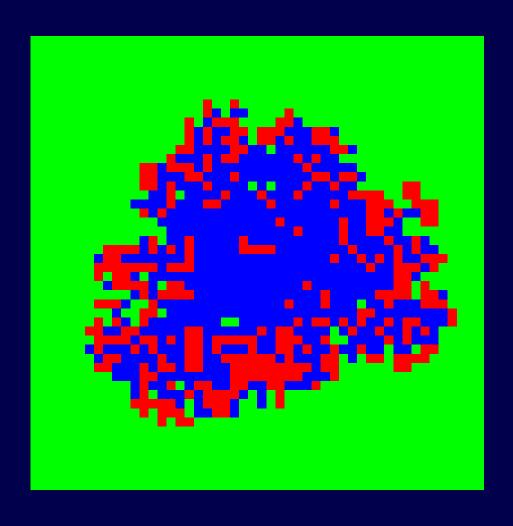
#### Individual based models

## Individual based models basic epidemic model: SIR

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{\gamma}{\longrightarrow} R_i \ R_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

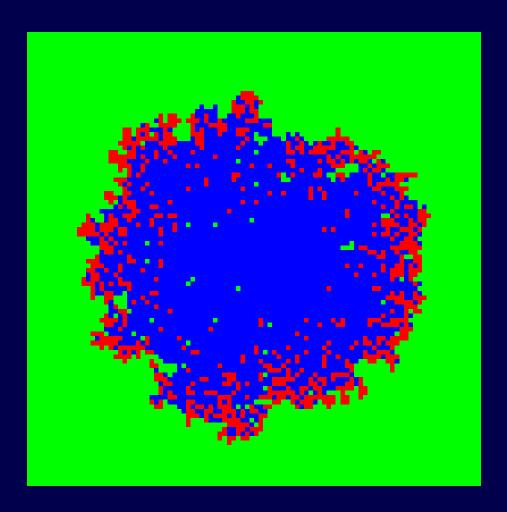
## Individual based models example: stochastic 2 dimensional SIR epidemic

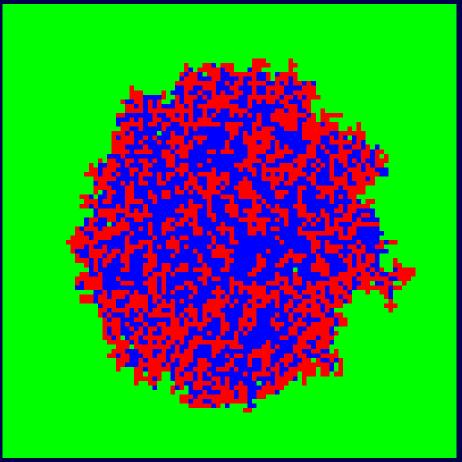
S green, I red, R blue



## Individual based models example: stochastic 2 dimensional SIRI epidemic

S green, I red, R blue





Master equation for spatial SIS model consider as example again SIS epidemic model

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

now at lattice site  $i \in \{1, ..., N\}$  an infected  $I_i = 1$ , or not  $I_i = 0$  hence  $S_i := 1 - I_i = 1$ , stochastic dynamics now given for variable  $I_i \in \{0, 1\}$ 

Master equation for spatial SIS model consider as example again SIS epidemic model

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

now at lattice site  $i \in \{1, ..., N\}$  an infected  $I_i = 1$ , or not  $I_i = 0$  hence  $S_i := 1 - I_i = 1$ , stochastic dynamics now given for variable  $I_i \in \{0, 1\}$ 

stochastic dynamics now given for variables  $I_i \in \{0, 1\}$  for  $i \in \{1, ..., N\}$ 

#### Master equation for spatial SIS model

stochastic dynamics now given for variables  $I_i \in \{0, 1\}$  for  $i \in \{1, ..., N\}$ 

$$egin{aligned} rac{d}{dt} & p & (I_1,I_2,...,I_N,t) \ & = \sum_{i=1}^N eta \left( \sum_{j=1}^N J_{ij} I_j 
ight) I_i & p(I_1,...,1-I_i,...,I_N,t) \ & + \sum_{i=1}^N lpha (1-I_i) & p(I_1,...,1-I_i,...,I_N,t) \ & - \sum_{i=1}^N \left[ eta \left( \sum_{j=1}^N J_{ij} I_j 
ight) (1-I_i) + lpha I_i 
ight] & p(I_1,...,I_i,...,I_N,t) \end{aligned}$$

with adjacency matrix  $J_{ij} \in \{0, 1\}$ 

#### Clusters and their dynamics

total number of infected individuals on the lattics

$$[I] := \sum_{i=1}^N \ I_i$$

total number of susceptibles

$$[S]:=\sum_{i=1}^N \ (1-I_i)$$

total number of pairs

$$[II] := \sum_{i=1}^N \sum_{j=1}^N \ J_{ij} \ I_i \cdot I_j$$

triples

$$[III] := \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ J_{ij} J_{jk} \cdot I_{i} I_{j} I_{k}$$

#### Clusters and their dynamics

triangles

$$[\Delta] := \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ J_{ij} J_{jk} J_{ki} \cdot I_{i} I_{j} I_{k}$$

space averages, e.g.  $[I] := \sum_{i=1}^{N} I_i$ , depend on the ensemble  $(I_1, ..., I_N)$ , hence define ensemble average

$$\langle I 
angle (t) := \sum_{I_1=0}^1 ... \sum_{I_N=0}^1 \left[ I 
ight] p(I_1,...,I_N,t)$$

and generally for any function  $f = f(I_1, ..., I_N)$ 

$$\langle f 
angle (t) := \sum_{I_1=0}^1 ... \sum_{I_N=0}^1 \ f(I_1,...,I_N) \ p(I_1,...,I_N,t)$$

then time evolution to calculate from master equation

$$rac{d}{dt}\langle f
angle(t):=\sum_{I_{1}=0}^{1}...\sum_{I_{N}=0}^{1}\;f(I_{1},...,I_{N})\;rac{d}{dt}p(I_{1},...,I_{N},t)$$

#### local mean value dynamics

$$egin{aligned} rac{d}{dt}raket{I_i}&:=\sum_{I_1=0}^1...\sum_{I_N=0}^1I_i &rac{d}{dt}\,p(I_1,...,I_N,t)\ &=&...\ &=η\sum_{j=1}^N\,J_{ij}\langle I_j(1-I_i)
angle-lpha\langle I_i
angle\ &=η\sum_{j=1}^N\,J_{ij}\langle S_iI_j
angle-lpha\langle I_i
angle \end{aligned}$$

global mean value dynamics

$$egin{aligned} rac{d}{dt} ra{I} &= \sum_{i=1}^N rac{d}{dt} ra{I_i} \ &= b \left( Q \langle I 
angle - \langle II 
angle_1 
ight) - a \langle I 
angle \ &= b \langle SI 
angle_1 - a \langle I 
angle \end{aligned}$$

using  $Q_i := \sum_{j=1}^{N} J_{ij}$  number of sites connected to site i, and for regular lattices  $Q_i = Q$  constant

global mean value dynamics

$$egin{array}{l} rac{d}{dt} \left\langle I 
ight
angle &= b \left( Q \langle I 
angle - \langle II 
angle_1 
ight) - a \langle I 
angle \ &= b \langle SI 
angle_1 - a \langle I 
angle \end{array}$$

contains pair expectations  $\langle II \rangle_1 = \sum_{i=1}^N \sum_{j=1}^N J_{ij} \langle I_i I_j \rangle$  hence to calculate dynamics for pairs

$$rac{d}{dt} \ \langle II 
angle_1 = \sum_{i=1}^N \sum_{j=1}^N \ J_{ij} rac{d}{dt} \langle I_i I_j 
angle$$

giving

$$egin{array}{l} rac{d}{dt} \, \langle II 
angle_1 &= \, 2b \left( \langle II 
angle_2 - \langle III 
angle_{1,1} 
ight) - 2a \langle II 
angle_1 \ &= \, 2b \langle ISI 
angle_{1,1} - 2a \langle II 
angle_1 \end{array}$$

#### dynamics for pairs

$$egin{array}{ll} rac{d}{dt} \, \langle II
angle_1 &= \, 2b \left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a \langle II
angle_1 \ &= \, 2b \langle ISI
angle_{1,1} - 2a \langle II
angle_1 \end{array}$$

#### now includes triples

$$\langle ISI
angle_{1,1}:=\sum_{i=1}^N\sum_{j=1}^N\sum_{k=1}^N J^1_{ij}J^1_{jk}\langle I_i(1-I_j)I_k
angle$$

or longer range correlations

$$\langle II
angle_2 := \sum_{i=1}^N \sum_{k=1}^N \underbrace{\left(\sum_{j=1}^N J_{ij} \ J_{jk}
ight)}_{=:(J^2)_{ik}} \langle I_iI_k
angle$$

#### Approximating pairs

global mean value dynamics contains pairs

$$rac{d}{dt}\left\langle I
ight
angle \,=\,b\left(Q\langle I
angle - \langle II
angle_1
ight) - a\langle I
angle$$

which can be approximated by an interaction of  $I_i$  not with its neigbours  $I_j$  but with an average of all other sites  $\langle I \rangle$ 

$$\sum_{j=1}^{N} \ J_{kj} I_{j} pprox \sum_{j=1}^{N} \ J_{kj} \ rac{\langle I 
angle}{N}$$

called "interacting with a mean field" instead of its neighbours directly

#### Approximating pairs

global mean value dynamics contains pairs

$$rac{d}{dt}\left\langle I
ight
angle \,=\,b\left(Q\langle I
angle -\langle II
angle_1
ight)-a\langle I
angle$$

which can be approximated by an interaction of  $I_i$  not with its neigbours  $I_j$  but with an average of all other sites  $\langle I \rangle$ 

$$\sum_{j=1}^{N} \, J_{kj} I_{j} pprox \sum_{j=1}^{N} \, J_{kj} \, rac{\langle I 
angle}{N}$$

called "interacting with a mean field" instead of its neighbours directly, hence

mean field approximation

#### Mean field approximation

#### technically

$$egin{aligned} \langle II
angle_1 &= \langle \sum_{i=1}^N \sum_{j=1}^N J_{ij}I_iI_j
angle = \langle \sum_{i=1}^N I_i \sum_{j=1}^N J_{ij}I_j
angle \ &pprox \langle \sum_{i=1}^N I_i rac{Q}{N} \cdot \langle I
angle 
angle = rac{Q}{N} \cdot \langle I
angle^2 \end{aligned} \ = rac{Q}{N} \cdot \langle I
angle^2 \end{aligned}$$

giving in the dynamics of the mean a closed ODE

$$egin{aligned} rac{d}{dt} ra{I} &= b \left( Q \langle I 
angle - rac{Q}{N} \langle I 
angle^2 
ight) - a \langle I 
angle \ &= rac{b Q}{N} ra{I} race (N - \langle I 
angle) - a \langle I 
angle \end{aligned}$$

#### Mean field approximation

#### technically

$$egin{aligned} \langle II
angle_1 &= \langle \sum_{i=1}^N \sum_{j=1}^N J_{ij}I_iI_j
angle = \langle \sum_{i=1}^N I_i \sum_{j=1}^N J_{ij}I_j
angle \ &pprox \langle \sum_{i=1}^N I_i rac{Q}{N} \cdot \langle I
angle 
angle = rac{Q}{N} \cdot \langle I
angle^2 \ &= rac{Q}{N} \cdot \langle I
angle^2 \end{aligned}$$

giving in the dynamics of the mean a closed ODE

$$egin{aligned} rac{d}{dt} ra{I} &= b \left( Q \langle I 
angle - rac{Q}{N} \langle I 
angle^2 
ight) - a \langle I 
angle \ &= rac{b Q}{N} ra{I} race (N - \langle I 
angle) - a \langle I 
angle \end{aligned}$$

our famous ODE of the SIS system from before with eta = bQ

#### Approximating triples into pairs

global dynamics dynamics contains triples

$$egin{array}{ll} rac{d}{dt} \, \langle II 
angle_1 &= \, 2b \left( \langle II 
angle_2 - \langle III 
angle_{1,1} 
ight) - 2a \langle II 
angle_1 \ &= \, 2b \langle ISI 
angle_{1,1} - 2a \langle II 
angle_1 \end{array}$$

idea of approximation

$$\langle SIR 
angle pprox rac{\langle SI 
angle \cdot \langle IR 
angle}{\langle I 
angle}$$

is basically a Bayes' rule now for conditioned mean

values 
$$\langle I_i|I_j
angle :=\sum\limits_{I_i=0}^1 I_i\; p(I_i|I_j),$$
 namely

$$\langle I_i I_j 
angle = \langle I_i | I_j = 1 
angle \cdot \langle I_j 
angle$$

respecively for triples

$$\langle I_i I_j I_k \rangle = \langle I_i | I_j \!=\! 1, I_k \!=\! 1 \rangle \cdot \langle I_j I_k 
angle$$

#### Approximating triples into pairs

essential approximation: the mean at location i depends on its neighbour j, but not on the next neighbour k

$$\langle I_i|I_j\!=\!1,I_k\!=\!1
anglepprox\langle I_i|I_j\!=\!1
angle$$

giving

$$\langle I_i I_j I_k 
angle pprox rac{\langle I_i I_j 
angle}{\langle I_j 
angle} \cdot \langle I_j I_k 
angle$$

and then to pull up to global quantities

#### Dynamics in pair approximation

from the original system

$$egin{aligned} rac{d}{dt}\langle I
angle &= b\left(Q\langle I
angle - \langle II
angle_1
ight) - a\langle I
angle \ & \ rac{d}{dt}\,\langle II
angle_1 &= 2b\left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a\langle II
angle_1 \end{aligned}$$

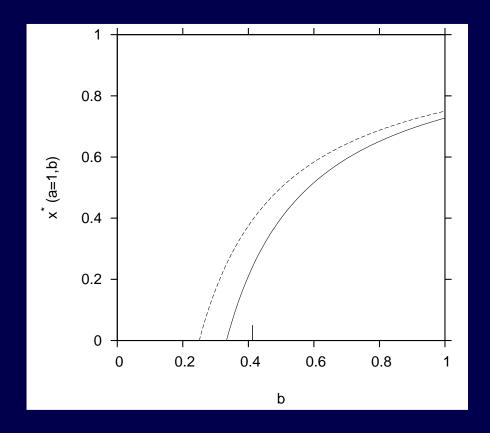
in pair approximation we obtain for densities

$$egin{array}{ll} x := \langle I 
angle / N & \in [0,1] \ y := \langle II 
angle_1 / (NQ) & \in [0,1] \end{array}$$

the closed ODE system

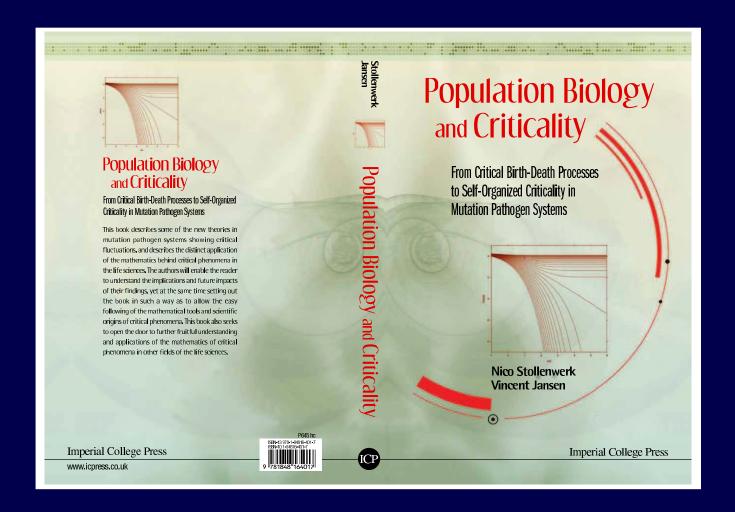
$$egin{aligned} rac{dx}{dt} &= bQ(x-y)-ax \ & rac{dy}{dt} &= 2b(Q-1)rac{(x-y)^2}{1-x} + 2b(x-y) - 2ay \end{aligned}$$

### Dynamics in pair approximation



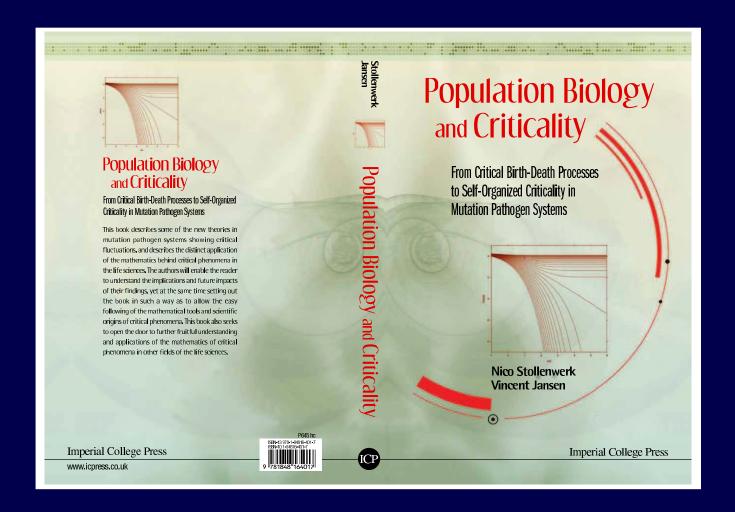
mean field, pair approximation, spatial simulation (from left to right)

# Theory of accidental pathogens, paradigmatic system: bacterial meningitis



in many-strain systems with fast evolution evolution towards critical fluctuations (SOC:-)

# Theory of accidental pathogens, paradigmatic system: bacterial meningitis



Muñoz et al. (2011): the "Stollenwerk-Jansen model (SJ)" is in universality class of voter model

#### local mean value dynamics

$$egin{aligned} rac{d}{dt}raket{I_i}&:=\sum_{I_1=0}^1...\sum_{I_N=0}^1I_i &rac{d}{dt}\,p(I_1,...,I_N,t)\ &=&...\ &=η\sum_{j=1}^N\,J_{ij}\langle I_j(1-I_i)
angle-lpha\langle I_i
angle\ &=η\sum_{j=1}^N\,J_{ij}\langle S_iI_j
angle-lpha\langle I_i
angle \end{aligned}$$

# Surrogate for human contact dynamics: exchanging money :-)

reaction scheme for exchanging an item from item holder  $I_i$  to susceptible  $S_j$  to receive this item

$$S_i + I_j \xrightarrow{\chi} I_i + S_j$$
 $I_i + S_j \xrightarrow{\chi} S_i + I_j$ 

gives dynamics of local expectation value

$$rac{d}{dt} \left\langle I_i 
ight
angle = \chi \sum_{j=1}^N \; J_{ij} \left( \left\langle I_j 
ight
angle - \left\langle I_i 
ight
angle 
ight) =: \chi \cdot \Delta \langle I_i 
angle$$

diffusion equation for regular lattices, generalizable to contact probabilities proportional to distance of individuals

"spatially restricted networks"

# Surrogate for human contact dynamics: exchanging money :-)

superdiffusion via fracional Laplace operator for  $\mu \leq 2$ 

$$rac{\partial}{\partial t}u(x,t)=\chirac{\partial^{\mu}}{\partial x^{\mu}}u(x,t)$$

defined via the Fourier transform (Riesz fractional derivative)  $\frac{\partial^{\mu}}{\partial x^{\mu}}e^{ikx} := -|k|^{\mu} \cdot e^{ikx}$  in

$$rac{\partial}{\partial t} u(x,t) = \chi rac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} ilde{u}(k,t) \left(rac{\partial^{\mu}}{\partial x^{\mu}} e^{ikx}
ight) \; \mathrm{d}k$$

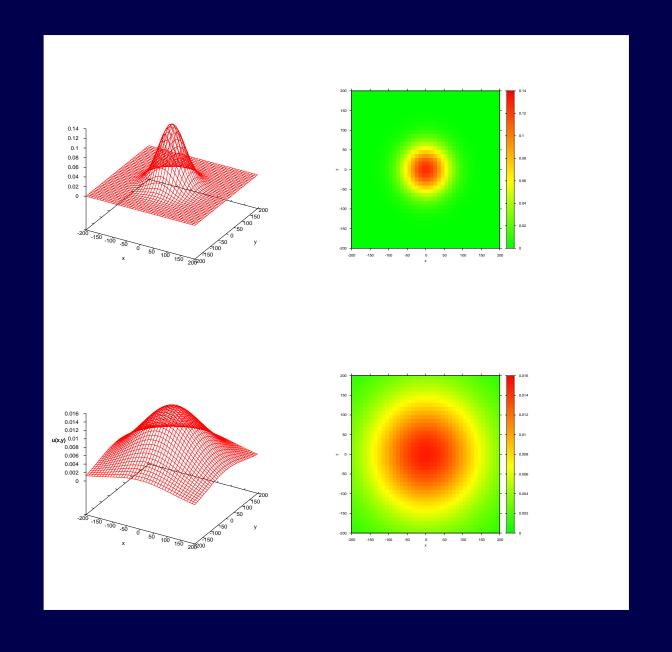
using convolution and with constant

$$c_{\mu} \coloneqq rac{1}{\pi} \Gamma(\mu+1) \sin\left(rac{\pi}{2}\mu
ight)$$

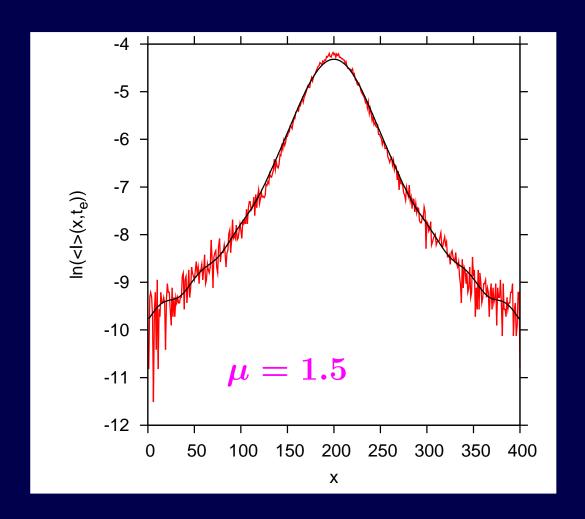
$$rac{\partial}{\partial t} u(x,t) = (\chi \cdot c_{\mu}) \int\limits_{-\infty}^{\infty} rac{u(y,t)}{|x-y|^{\mu+1}} \mathrm{d}y$$

as integral representation of superdiffusive Laplace

### Super-diffusion in higher dimensions



### Spatial spreading in epidemiological systems: Superdiffusion using fractional calculus



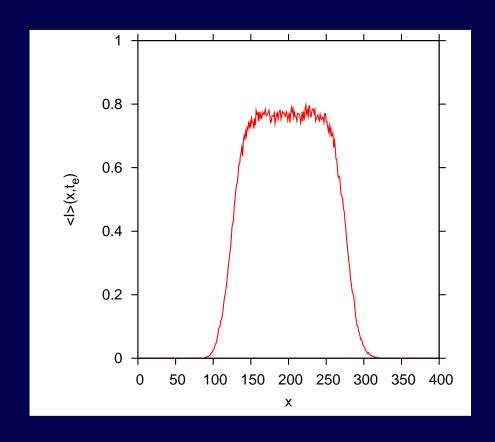
stochastic histogram and fractional diffusion equation

$$\langle I_i \rangle \approx u(\underline{x}_i, t)$$

### Reaction-diffusion system in the SIS case Kolmogorov-Fisher type equation

dynamics for local expectation values

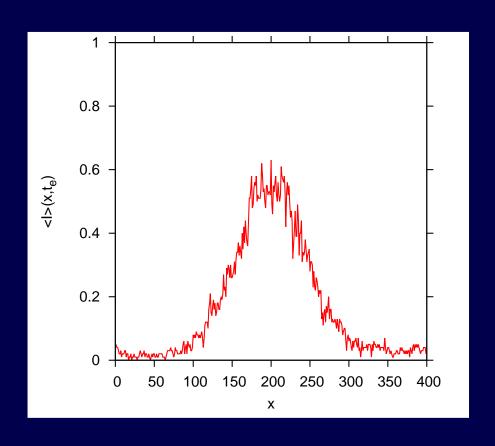
$$rac{d}{dt}\left\langle I_{i}
ight
angle =eta Q\langle I_{i}
angle \left(1-\langle I_{i}
angle
ight) -lpha\langle I_{i}
angle +eta(1-\langle I_{i}
angle)\cdot\Delta\langle I_{i}
angle$$



### Reaction-super-diffusion system in the SIS case Kolmogorov-Fisher type equation

dynamics for local expectation values

$$rac{d}{dt}\left\langle I_{i}
ight
angle =eta Q\langle I_{i}
angle \left(1-\langle I_{i}
angle
ight)\!-\!lpha\langle I_{i}
angle\!+\!eta(1-\langle I_{i}
angle)\!\cdot\!\Delta^{rac{\mu}{2}}\langle I_{i}
angle$$



#### Power law jumps and power law waiting times

$$x_n = \sum_{i=1}^n \xi_i \qquad , \qquad t_n = \sum_{i=1}^n au_i$$

arrival probability  $\eta(x,t)$  to have arrived at time t at the location x, jump prob.  $\lambda$ , waiting time prob.  $\psi$ ,

$$\eta(x,t) = \int_{-\infty}^{\infty} \lambda(x-x') \int_{0}^{t} \psi(t-t') \eta(x',t') dt' dx' + \delta(x) \delta(t)$$

then the probability p(x,t) to be at time t at location x via survival probability  $\Psi(t-t'):=1-\int_{t'}^t \psi(t'')\ dt''$ 

$$p(x,t) = \int_0^t \Psi(t-t') \eta(x,t') \ dt'$$

with convolutions in Fourier transform respectively in Laplace transform gives

$$ilde{ar{p}}(k,s) = rac{1-ar{\psi}(s)}{s} \cdot rac{1}{1-ar{\psi}(s)\cdot ilde{m{\lambda}}(k)}$$

#### Power law jumps and power law waiting times

Fourier-Laplace transform

$$ilde{ar{p}}(k,s) = rac{1-ar{\psi}(s)}{s} \cdot rac{1}{1-ar{\psi}(s)\cdot ilde{m{\lambda}}(k)}$$

with power law jump and waiting time probabilities for large arguments, hence for the respective transforms

$$ar{\psi}(s) = 1 - s^{
u} \quad ext{for} \quad s o 0$$

$$ilde{oldsymbol{\lambda}}(k) = 1 - |k|^{\mu} \; ext{ for } \; |k| 
ightarrow 0$$

with exponents  $\mu$  and  $\nu$  gives

$$ilde{ar{p}}(k,s) = rac{s^{
u-1}}{s^{
u}+|k|^{\mu}}$$

the same result as in fractional calculus

#### Space-time fractional diffusion equation

generalized from 
$$\nu=1$$
 and  $\mu=2$  
$$\frac{\partial^{\nu}}{\partial t^{\nu}}u(x,t)=\chi\frac{\partial^{\mu}}{\partial x^{\mu}}u(x,t)$$

with spatial Riesz fractional derivative via Fourier transform

$$rac{\partial^{\mu}}{\partial x^{\mu}}e^{ikx}:=-|k|^{\mu}\cdot e^{ikx}$$

and temporal Caputo fractional derivative via Laplace transform

$$\left(\int\limits_0^\infty e^{-st}\left(rac{\partial^
u}{\partial t^
u}f(t)
ight)\;dt
ight):=s^
uar f(s)-s^{
u-1}f(0)$$

we obtain as Fourier-Laplace transform

$$ilde{ar{u}}(k,s)= ilde{u}(k,t_0=0)\,rac{s^{
u-1}}{s^{
u}+\chi|k|^{\mu}}$$

#### Space-time fractional diffusion equation

solution via Laplace-back transform to Mittag-Leffler function

$$E_{
u}(z) = \sum_{n=0}^{\infty} rac{z^n}{\Gamma(
u n + 1)}$$

with

$$\int\limits_0^\infty e^{-st}E_
u(ct^
u)\;dt=rac{s^{
u-1}}{s^
u-c}$$

and Fourier back-transform gives

$$u(x,t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ilde{u}(k,t_0) E_{
u} \left( -\chi |k|^{\mu} (t-t_0)^{
u} 
ight) \mathrm{e}^{ikx} \; dk$$

#### Space-time fractional diffusion equation

solution

$$u(x,t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ilde{u}(k,t_0) E_{
u}\left(-\chi |k|^{\mu} (t-t_0)^{
u}
ight) \mathrm{e}^{ikx} \; dk$$

with initial condition in real space

$$u(x,t) = \int_{-\infty}^{\infty} u(y,t_0) G(x-y,t-t_0) \ dy$$

with Green's function

$$G(x-y,t-t_0) = rac{1}{\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}} \, rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{e}^{i ilde{k}z} E_
u(-| ilde{k}|^\mu) d ilde{k}$$

substituting 
$$z:=rac{x-y}{\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}}$$
 and  $ilde{k}:=k\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}$ 

#### Fast power law random numbers

waiting times with Mittag-Leffler random numbers with exponent  $\nu$ 

$$au = -\gamma_t \ ln(u) \left(rac{sin(
u\pi)}{tan(
u\pi v)} - cos(
u\pi)
ight)^{rac{1}{
u}}$$

and jumps with Lévy stable random numbers with exponent  $\mu$ 

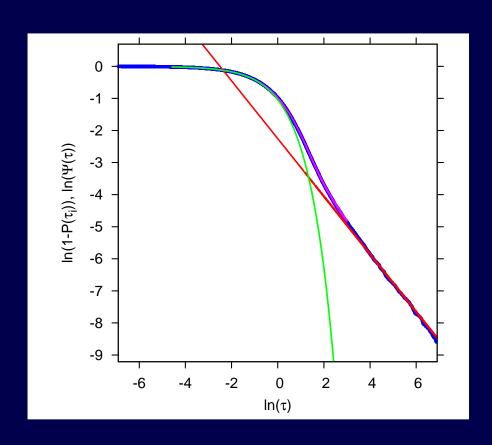
$$\xi = \gamma_x \left(rac{-ln(u)\cdot cos(\phi)}{cos((1-\mu)\phi)}
ight)^{1-rac{1}{\mu}} rac{sin(
u\phi)}{cos(\phi)}$$

using uniformly distributed random numbers u and v on the unit interval and  $\phi:=\pi\left(v-\frac{1}{2}\right)$ 

Fast analysis via complementary distribution fct.

#### e.g. survival time distribution

$$\Psi( au) := \int_{ au}^{\infty} \psi( ilde{ au}) \; d ilde{ au} = 1 - \int_{0}^{ au} \psi( ilde{ au}) \; d ilde{ au} = 1 - P( au)$$



#### Human mobility in epidemiological context

"radiation model"
uses human densities to model mobility

=> power laws expected

twitter data in Thailand a more direct surrogate for human mobility

=> power laws observable (?)

(as import into dengue models)

## Human mobility in epidemiological models, radiation model

epidemiological models for Thai provinces  $\underline{x}_i$  and populations  $N_i$  with import  $\varrho_i$ 

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

now with explicit modelling of human mobility, hence  $T_{j|i}$  the number of people moving from location  $\underline{x}_i$  to  $\underline{x}_j$  via total number of travelers from  $\underline{x}_i$ 

$$T_i = arepsilon N_i$$

assumed simplest proportional to population sizes and with elementary probability  $p_{j|i}$  for a single person to move

$$p(T_{j|i}|T_i,p_{j|i}) = \left(rac{T_i}{T_{j|i}}
ight) p_{j|i}^{T_{j|i}} (1-p_{j|i})^{T_i-T_{j|i}}$$

and  $p_{j|i}$  still to be determined from detailed radiation model

## Radiation model for $p_{j|i}$

define variable z as measuring "attractivity" of a location (or "absorption capacity" in physical radiation)

draw  $N_i$  times from probability distribution p(z) obtaining maximal value  $z_i^{max}$ 

and use extreme value statistics tools via cumulative distribution function

$$P(z) := \int_0^z p( ilde{z}) \; d ilde{z}$$

hence for a fixed value z we have for  $N_i$  independent draws

$$egin{aligned} p(z_i^{max} < z) &= p(z_{i,1} < z, z_{i,2} < z, ..., z_{i,N_i} < z) \ &= p(z_{i,1} < z) \cdot p(z_{i,2} < z) \cdot ... \cdot p(z_{i,N_i} < z) \ &= (P(z))^{N_i} \end{aligned}$$

### Radiation model for $p_{j|i}$

define variable z as measuring "attractivity" of a location (or "absorption capacity" in physical radiation)

draw  $N_i$  times from probability distribution p(z) obtaining maximal value  $z_i^{max}$ 

and use extreme value statistics tools via cumulative distribution function

$$P(z) := \int_0^z p( ilde{z}) \; d ilde{z}$$

hence for a fixed value z we have for  $N_i$  independent draws

$$p(z_i^{max} = z) = N_i \cdot P(z)^{N_i - 1} \cdot p(z)$$

with  $p(z) = \frac{dP(z)}{dz}$ , hence all expressed via cumulative distribution function P(z)

1) Emit at  $\underline{x}_i$  a particle with attractivity value  $z_i^{max}$ . (The higher the population size  $N_i$  the higher  $z_i^{max}$  is likely to be).

2) Absorb not at any location  $\underline{x}_k$  with attractivity  $z_k^{max} < z_i^{max}$  in a circle with radius of distance  $r_{ik} := ||\underline{x}_k - \underline{x}_i||$ .

3) Only absorb at location  $\underline{x}_j$  where the attractivity is  $z_j^{max} > z_i^{max}$  at the minimal distance  $r_{ij} := ||\underline{x}_j - \underline{x}_i||.$ 

1) The probability  $p(z_i^{max} = z)$  of drawing  $z_i^{max}$  to be of value z at location  $\underline{x}_i$  with population size  $N_i$  is given by

$$p(z_i^{max} = z) = N_i \cdot P(z)^{N_i - 1} \cdot \frac{dP(z)}{dz}$$

2) The probability  $p(\bigwedge_{k:r_{ik} < r_{ij}} z_k^{max} < z)$  of not being absorbed at any location  $\underline{x}_k$  due to  $z_k^{max} < z_i^{max}$  is given by

$$p(\bigwedge z_k^{max} < z) = P(z)^{s_{ij}} \quad ext{with} \quad s_{ij} = \sum_{k:r_{ik} < r_{ij}} N_k$$

3) The probability  $p(z_j^{max}>z)$  of being absorbed at nearest location  $\underline{x}_j$  with  $z_j^{max}>z_i^{max}$  is given by

$$p(z_j^{max} > z) = 1 - p(z_j^{max} < z) = 1 - P(z)^{N_j}$$

hence the elementary probability  $p_{j|i}$  of being emitted in  $\underline{x}_i$  and absorbed in  $\underline{x}_j$  is given by the three contributions

$$p_{j|i} = \int_0^\infty p(z_i^{max} = z) \cdot p(\bigwedge_k z_k^{max} < z) \cdot p(z_j^{max} > z) \; dz$$

hence the elementary probability  $p_{j|i}$  of being emitted in  $\underline{x}_i$  and absorbed in  $\underline{x}_j$  is given by the three contributions

$$\begin{split} p_{j|i} &= \int_0^\infty p(z_i^{max} = z) \cdot p(\bigwedge_k z_k^{max} < z) \cdot p(z_j^{max} > z) \; dz \\ &= \int_0^\infty N_i P(z)^{N_i - 1} p(z) \cdot P(z)^{s_{ij}} \cdot (1 - P(z)^{N_j}) \; dz \\ &= N_i \int_0^\infty \left( P(z)^{N_i + s_{ij} - 1} - P(z)^{N_i + s_{ij} + N_j - 1} \right) \; \frac{dP}{dz} \; dz \\ &= N_i \int_0^1 \left( P^{N_i + s_{ij} - 1} - P^{N_i + s_{ij} + N_j - 1} \right) \; dP \\ &= N_i \left( \frac{1}{N_i + s_{ij}} - \frac{1}{N_i + s_{ij} + N_j} \right) \\ &= \frac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})} \end{split}$$

## Mean connectivity $\langle T_{j|i} \rangle$

the mean connectivities between provinces  $\langle T_{j|i} \rangle$  are now easily obtained from the binomial probabilities

$$p(T_{j|i}|T_i,p_{j|i}) = \left(rac{T_i}{T_{j|i}}
ight) p_{j|i}^{T_{j|i}} (1-p_{j|i})^{T_i-T_{j|i}}$$

with elementary probabilities  $p_{j|i}$  as calculated above

$$p_{j|i} = rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})}$$

giving with  $T_i = \varepsilon N_i$ 

$$\langle T_{j|i}
angle = T_i \cdot p_{j|i} = arepsilon N_i \cdot rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})}$$

to be calculated for all n = 76 provinces in Thailand and its population sizes  $N_i$  and its distances  $r_{ij} := ||\underline{x}_j - \underline{x}_i||$  from the coordinates  $\underline{x}_i$  given in the World Geodetic System 1984 (WGS 84)

## Plugging $\langle T_{j|i} \rangle$ into epidemiological models

single province models with import  $\varrho_i$ 

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

become depending on infection levels and connectivities in other provinces

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i(\{\langle T_j|_i\rangle, \underline{X}_j\}))$$

e.g. in SIS model with  $S_i = (N_i - I_i)$ 

$$\dot{I}_i = rac{eta_i}{N_i}(I_i + arrho_i N_i)S_i - lpha_i I_i$$

becomes

$$egin{aligned} \dot{I}_i &= rac{eta_i}{N_i} I_i S_i - lpha_i I_i \ &+ \sum_{j=1, j 
eq i}^n rac{eta_j}{N_j} I_j \cdot T_j|_i rac{S_i}{N_i} + \sum_{j=1, j 
eq i}^n rac{eta_i}{N_i} T_i|_j rac{I_j}{N_j} \cdot S_i \end{aligned}$$

## Plugging $\langle T_{j|i} \rangle$ into epidemiological models

single province models with import  $\varrho_i$ 

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

become depending on infection levels and connectivities in other provinces

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i(\{\langle T_j|_i\rangle, \underline{X}_j\}))$$

e.g. in SIS model with  $S_i = (N_i - I_i)$ 

$$oldsymbol{\dot{I}_i} = rac{eta_i}{N_i}(I_i + arrho_i N_i)S_i - lpha_i I_i$$

gives effective import

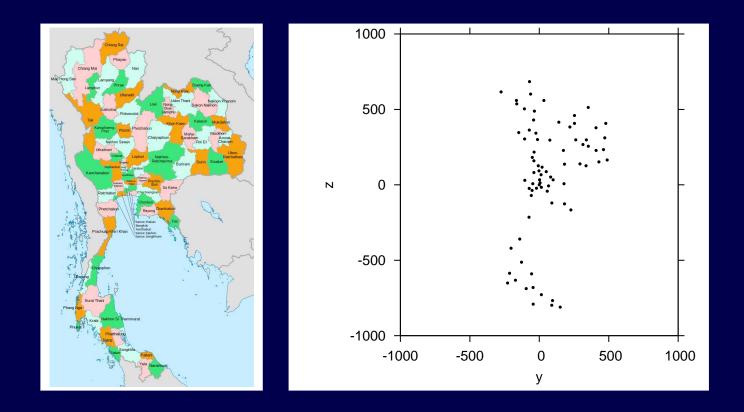
$$arrho_i = rac{1}{N_i} \sum_{j=1, j 
eq i}^n \left(rac{eta_j}{eta_i} T_{j|i} + T_{i|j}
ight) rac{I_j}{N_j}$$

# New data via DENFREE: 34 years of DHF up to today, all provinces



Thailand with 77 changwats (provinces)

#### Implementation of the model for Thailand



locations  $\underline{x}_i$  and connectivities  $T_{j|i}$  calculated

power law statistics in preparation

#### One word of caution

the elementary probabilities are  $p_{j|i}$  are in the binomial distribution normalized via  $q_{j|i} := 1 - p_{j|i}$  being the probability of being emitted in i but not absorbed in j, and trivially  $p_{j|i} + q_{j|i} = 1$ 

but along a finite network of n nodes the  $p_{j|i}$  give

$$\sum_{j=1,j 
eq i}^{n} p_{j|i} = \sum_{j=1,j 
eq i}^{n} rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})} = 1 - rac{N_i}{N_i}$$

which is only approximately normalized in large networks with small nodes each via

$$N_i/N o 0 \quad ext{for} \quad N_i \ll N$$

but a small probability  $N_i/N$  remains for particles to be emitted from i and not being absorbed in any other node, hence leaving any finite network