Power law jumps and power law waiting times,
fractional calculus and human mobility

in epidemiological systems
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Simplest epidemiological processes

epidemic process: SIS
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Susceptible-Infected-Recovered epidem.: SIR
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gives ODE system
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SIR system with seasonality
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with seasonal forcing of the infection rate

B(t) =Bo- (1 +n-cos(w-t))



SIR system with seasonality
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I(t) versus S(t)



SIR system with seasonality
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Epidemiological systems

with various qualitative features
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dengue fever cases in Chiang Mai (Thailand)



Explicit multi-strain models:

example: dengue fever



Explicit multi-strain models:

example: dengue fever

simplest example: two-strain SIR model

including antibody dependent enhancement (ADE)

=> chaos only for large ADE parameter ¢

biologically motivated extension

including temporary cross immunity

—> chaos for much wider ¢—region

(also for “inverse ADE”)



Antibody dependent enhancement, ADE

Immune response to dengue infection
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Transition rates for two-strain SIR model
with ADE and temporary cross immunity
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Transition rates for two-strain SIR model
with ADE and temporary cross immunity
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Multi-strain model for dengue fever
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Bifurcations for changing ¢
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Bifurcation diagram

bifurcation diagram for o = 2

L] 1 L] L]
i.e. ; year of temporary cross-immunity



Lyapunov spectrum versus bifurcation diagram




Bifurcation analysis via continuation: AUTO

Comparing AUTO, Lyapunov spectra and

numerical bifurcation diagrams:



Including seasonality

gives time series comparable to data
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Data matching:

compare simulations with data

stochastic model
empirical data

"Severe Cases’
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Comparing 2-strain with 4-strain models

primary versus secondary infection drives the
dynamics more than the exact number of strains



Model comparison:

2-strain versus 4-strain models

two-strain model simulation
dhf empirical data
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four-strain model simulation
dhf empirical data

Secondary Infections
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4-strain model versus Chiang Mai data
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Dengue fever outbreak on Madeira, Portugal, 2012

more than 2000 autochtonous cases detected

Introduction
of mew surveillance system




Dengue fever outbreak on Madeira, Portugal, 2012

more than 2000 autochtonous cases detected

European Center for Disease Control (ECDC):

”The largest dengue outbreak in Europe
since the 1920th in Greece”



For data analysis:

stochastic modelling



Basic probability theory

joint probability

p(z,y)
marginal distribution

p(z) = /p(w,y) dy
Bayes’ rule

p(xz,y) = p(x|y) - p(y)

distribution that an event xg is given with certainty is
p(x) = é(x — xg) with Dirac’s delta-function

b
/a f(z) - 6(x — zo) dz = f(zo)

for £g between a and b



Application to epidemic processes

joint probability to find I, infected at time t + At
and I,, at t
p(In—I—la In)

marginal distribution to find only one of the variables
no matter what the other variable does

N
p(In-I-l) — Z p(In—I—laIn)
1,,=0

Bayes’ rule gives conditional probability p(I,41|In)
for I, 1 knowing for sure I,, times p(Ip)

p(In—l—la In) — p(In—|—1|In) : p(In)

giving a dynamic evolution equation for probabilities
of infected p(I,) at time ¢ into p(I,41) at time ¢t + At

\Y

Perat(Iny1) = Y p(Int1lIn) - pi(In)
1,,=0



Application to epidemic processes

equation
N
pt—|—At(In—|—1) — Z p(In—|—1|In) - pt(In)
I1,=0

is a Perron-Frobenius type equation, and defines a
time discrete Markov process



Application to epidemic processes

differential quotient gives time continous Markov pro-
cess

pt+at(l) —pe(l) _ ()
JAN 7
hencg inserting time discrete version with I := I, 14
and I := 1,
At -~ P Pt At Pt

and inserting normalization of conditioned probability
N Op(I|I) = 1 into the last term glves

EP(I) = Z wﬂjpt(j) — Z wp  pr(1)

dt £
I=0 I=0

with transition rates Wy = (Alt p(I|I~))



Application to epidemic processes

equation

; N ) N
EP(I) = > wp i Pr(I) — > wj p pe(I)
I=0,0#1 I=0,T#41

is also called master equation and defines a time con-
tinuous state discrete Markov process



SIS epidemic

stochastic process
S+1 -2 141
I = S
for variable I and S = N —1 => probab. p(l,t)

%p([,t) = %(I— (N — (I —1)) p(I —1,t) + (I +1) p(I+1,t)
B

~ (RIOV = 1) +aI) p(11)
mean (I) := ZZIV:OI - p(I,1)
d B
- (I) = (B—a){) — NU )
and only in mean field approx. var := (I*) —(I)? = 0

d g
— () = Y = () = el

we obtain closed ODE



SIR epidemic

stochastic process
S+1 2141
I S R
R = S
for variables S, I and R=N—-S—1 => probab.
p(S, I,t)

d P
—p(S,Lt) = S(I=1)(S+1) p(S+ 1,1 - 1,1)
+y(I + 1) p(S, I + 1,t)

+a(N = (S+1) - I) p(S + 1, I, )

_ (%SI+7I+Q&(N— S—I)) p(SaI7t)



Short term predictability,
long term unpredictability
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Parameter estimation in dengue:
scaling with noise, importance of import
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Individual based models



Individual based models
basic epidemic model: SIR

S;+I; 2 I, + I,

I,  R;
R, — S;



Individual based models
example: stochastic 2 dimensional SIR epidemic

S green, I red, R blue




Individual based models
example: stochastic 2 dimensional SIRI epidemic

S green, I red, R blue




Master equation for spatial SIS model

consider as example again SIS epidemic model

S;+I; 25 I, + I,

I; = S;

now at lattice site ¢« € {1,..., N} an infected I; = 1, or
not I; = 0 hence S; :=1— I, = 1, stochastic dynamics
now given for variable I; € {0,1}



Master equation for spatial SIS model

consider as example again SIS epidemic model

S;+I; 25 I, + I,

I; = S;

now at lattice site ¢« € {1,..., N} an infected I; = 1, or
not I; = 0 hence S; :=1— I, = 1, stochastic dynamics
now given for variable I; € {0,1}

stochastic dynamics now given for variables I; € {0, 1}
for : € {1,..., N}



Master equation for spatial SIS model
stochastic dynamics now given for variables I; € {0, 1}
for 2 € {1,..., N}

d
— P (Ila I27 000 ) IN9 t)

dt
N N
=> 8| 4L | L p(Iy, ..l — Ly ooy Iy, t)
i=1 j=1

N
T Z a(l _ Ii) p(Ila ey 1 — Iiv sy INa t)
1=1

Y

I N
_ Z IB (Z JzJIJ> (]_ — Iz) + al; p(Il, coo Ii, oo IN, t)
i=1 | \j=1

with adjacency matrix J;; € {0,1}



Clusters and their dynamics

total number of infected individuals on the lattics

1] := Z I,

total number of susceptibles
N

[S]:=> (1-1L)

=1

total number of pairs
N N
[I1] : ZZ Ji; I
=1 j3=1

triples

N N N

IIT):= ) Y Y Jijdi - LI

=1 73=1 k=1




Clusters and their dynamics

triangles

N N N

i=1 j=1 k=1
space averages, e.g. [I]| := Z,ﬁil I;, depend on the
ensemble (Iy,...,I;y), hence define ensemble average

(Iy(t) := ) oo Y [T p(I1y ey Ins t)

1,=0 In=0

and generally for any function f = f(I1,...,IxN)

<f>(t) e Z Z f(Ila IN) p(Ih cee INat)

=0 IN=0

then time evolutlon to calculate from master equation

_<f ( ) I Z Z f(Ilv IN) %p(Ib"‘v INvt)

=0 InN=0



Dynamics of expectation values

in spatial systems

local mean value dynamics

(1 = z S 5L (Tt

—0  In=0

= BZ Jij{(L;(1 — I;)) — a(L;)

N
= B> Ji(Sil;) — oIy
j=1



Dynamics of expectation values

in spatial systems
global mean value dynamics

d N od
£<I>:Z£<Ii>

- ;&QU) ~ Dy ) - alr)

using Q; := Zé\rzl J;; number of sites connected to

site 7, and for regular lattices ); = Q constant



Dynamics of expectation values

in spatial systems

global mean value dynamics
d
S0 = v(@w - ) ~a)
— b(ST); — a(I)
contains pair expectations (I1); = Z,ﬁil Z;\rzl J;i (L;15)

hence to calculate dynamics for pairs

d Nl d
e L = > > Jij— (Lidj)

i=1 j=1

giving

% (IT); = 2b ((II)2 —~ <III>1,1> — 2a(II),

= 2b<ISI>1,1 — 2CL<II>1



Dynamics of expectation values

in spatial systems

dynamics for pairs
d
= (1)1 = 2b ((II)2 — <III>1,1> — 2a(IT),

= 2b<ISI>1,1 — 2CL<II>1

now includes triples

N N N

(ISI)1y:=>» Y Y JLIL(Li(1 — L)1)

=1 7=1 k=1

or longer range correlations

(IT), := S‘ S‘ (S‘ Jij ij> (I;I};)

1=1 k=1

\

'(Jz)zk



Approximating pairs
global mean value dynamics contains pairs

0 = (@ - ) —a)

which can be approximated by an interaction of I; not
with its neigbours I; but with an average of all other

sites (I)
N N
(1)
Tl =~ Jpi ~L
jzzl J=-J J:Zl J N

called ”interacting with a mean field” instead of its
neighbours directly



Approximating pairs

global mean value dynamics contains pairs

% 0 = v(@w = an )~ an

which can be approximated by an interaction of I; not
with its neigbours I; but with an average of all other

sites (I)
N N
(1)
> gt =3 gy D
< g i3 < N

called ”interacting with a mean field” instead of its
neighbours directly, hence

mean field approximation



Mean field approximation

technically

N N

(1), = (ZZ JijLi1;) = <Z I; Z Jii15)

=1 3=1

0y L%<I>>=%<I>-<Z 5)
Q

= N.g)?

giving in the dynamics of the mean a closed ODE

Q

40 = (@ - T ) - an

= 22 (1) (N = (1)) — (D)



Mean field approximation

etk
(IT), = (éé Ji; Li1;) = (é I; é Jii1;)
%é::hf\), () =2 <ZI>

2.y

giving in the dynamics of the mean a closed ODE

G 0 =v(@w = ) —an

= 22 (1) (N = (1)) — (D)

our famous ODE of the SIS system from before
with 3 = b(Q)



Approximating triples into pairs
global dynamics dynamics contains triples
d
- (IT)1 = 2b ((II>2 — (III>1,1> — 2a(I1),

= 2b<ISI>1,1 — 2CL<II>1
idea of approximation

(S1R) ~ (SD - IR

(1)
is basically a Bayes’ rule now for conditioned mean
1
values (I;|I;) := > I; p(I;|1;), namely
1;=0
(Lil;) = (L;|I; = 1) - (I})

respecively for triples

(Lilily) = (L;|I; =1, I;,=1) - (I;I})



Approximating triples into pairs

essential approximation: the mean at location i de-
pends on its neighbour 7, but not on the next neigh-
bour k

giving

and then to pull up to global quantities



Dynamics in pair approximation

from the original system
d
D) = b(QUD) — (1)) — al)

% (IT); = 2b ((II)Q —~ <III>1,1> — 2a(II),

in pair approximation we obtain for densities

x = (I)/N e [0, 1]
y := (II);/(NQ) € [0,1]
the closed ODE system

Qe — v)
— = €Xr — — axr
dt Y

d N2
d—?z — 2b(Q — 1)(31_?;) + 2b(z — y) — 2ay




Dynamics in pair approximation

mean field, pair approximation, spatial simulation
(from left to right)



Theory of accidental pathogens,

paradigmatic system: bacterial meningitis
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Dynamics of expectation values

in spatial systems

local mean value dynamics

(1 = z S 5L (Tt

—0  In=0

= BZ Jij{(L;(1 — I;)) — a(L;)

N
= B> Ji(Sil;) — oIy
j=1



Surrogate for human contact dynamics:
exchanging money :-)

reaction scheme for exchanging an item from item
holder I; to susceptible S; to receive this item

Si‘|‘Ij LIi‘FSj
I;+8; % S;+ I

gives dynamics of local expectation value

N (Iz> = X Z ng ( <Iz>) =+ X A<Iz>

diffusion equation for regular lattices, generalizable to
contact probabilities proportional to distance of indi-
viduals

”spatially restricted networks”



Surrogate for human contact dynamics:
exchanging money :-)

superdiffusion via fracional Laplace operator for p < 2

0 oH
au(xv t) — x@u(w, t)

defined via the Fourier transform (Riesz fractional deriva-

tive) 8“”6”“" = —|k|M - e'F® in
9 17 O
—u(z,t) = x— | a(k,t et ) dk
ot () X o (k, )<8w“ )
— O

using convolution and with constant
1 [ ]
cy = I'(pn+ 1) sin (Gp)

8 O
pt(@t = 0cew [

U(y,t)
z — ylt1?

as integral representation of superdiffusive Laplace



Super-diffusion in higher dimensions
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Spatial spreading in epidemiological systems:

Superdiffusion using fractional calculus
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stochastic histogram and fractional diffusion equation

(I;) = u(z;, )



Reaction-diffusion system in the SIS case

Kolmogorov-Fisher type equation

dynamics for local expectation values

5 (1) = Q) (1= (1)) —alf)+ B0~ (1) AL
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Reaction- diffusion system in the SIS case

Kolmogorov-Fisher type equation

dynamics for local expectation values

5 (1) = Q) (1 - (1) ) —aL+B01—(1:)- Ak

50 100 150 200 250 300 350 400
X




Power law jumps and power law waiting times

random walk n

n
=) & s =) T

arrival probability n(x,t) to have arrived at time t at
the location x, jump prob. A, waiting time prob. ),

e t
n(x,t) = /_oo )\(:v—a:')/o P(t—tn(x',t") dt’ de’+5(x)d(t)

then the probability p(x,t) to be at time ¢ at location
x via survival probability W(t—t') := 1 — [}, (t") dt”

t
p(x,t) = /O Ut — t)n(e, t) de

with convolutions in Fourier transform respectively in
Laplace transform gives

Sk, s 1—&(3). | )
S 1 — (s) - A(k)




Power law jumps and power law waiting times

Fourier-Laplace transtorm
=~ 1 — r‘?b(s) 1
p(k,s) = : — =
1 —9(s) - A(k)
with power law jump and waiting time probabilities

for large arguments, hence for the respective trans-
forms

P(s)=1—5sY for s — 0

Xk)=1—|k|* for |k|—0

with exponents p and v gives

the same result as in fractional calculus



Space-time fractional diffusion equation

generalized from v = 1 and pu = 2
oY oM

@u(w, t) — X%U(a?, t)

with spatial Riesz fractional derivative via Fourier trans-
form

OH

oxH

and temporal Caputo fractional derivative via Laplace
transform

elkT . —|k|” . otk

076“ (g—;ﬂﬂ) dt | := s"f(s) — s" 71 f(0)

we obtain as Fourier-Laplace transform

r—1




Space-time fractional diffusion equation

solution via Laplace-back transform to Mittag-Lefler
function

> v
Ey(z) =
o F'(vn+1)
with
oF vr—1
/e_StE,/(ct”) dt =
sV —
0

and Fourier back-transform gives

u(x,t) = ik, to) Ey (—x|k|*(t — to)¥) e** dk

v



Space-time fractional diffusion equation

solution

u(x,t) = ik, to) Ey (—x|k|H(t — to)¥) e** dk

1 oo
vV 27 /—oo
with initial condition in real space

oo
u@,t) = [ u(y,t)Gla — .t — to) dy
— OO

with Green’s function

1 1 > ikz s >
G(z—y, t—to) = — i / eiFz B (Z|k|m)d
XF(t — tg)r <7 /=0
~ JL 14
substituting z := ——~—2— and k := kx#(t — tg)*

1 v
xH (t—tg)



Fast power law random numbers

waiting times with Mittag-Lefller random numbers with
exponent v

stn(v) v

r = n(w) ( - cos(um))

and jumps with Lévy stable random numbers with ex-
ponent u

1
¢ (—ln(u) : cos(qb)) 1= sin(vo)
=
"\ cos((1 — p)o) cos (o)
using uniformly distributed random numbers u and v

on the unit interval and ¢ := =« (fu — l)

tan(vmv)

2



Fast analysis via complementary distribution fct.

e.g. survival time distribution

WU(r):= [roozp(%) dr =1 —/Osz(%) dr =1— P(1)
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Human mobility in epidemiological context

”radiation model”
uses human densities to model mobility

=> power laws expected

twitter data in Thailand
a more direct surrogate for human mobility

—=> power laws observable (7)

(as import into dengue models)



Human mobility in epidemiological models,

radiation model

epildemiological models for Thai provinces z; and pop-
ulations IV; with import p;

X, = f.(X;,0i)

now with explicit modelling of human mobility, hence
Tj|i the number of people moving from location x; to

Z via total number of travelers from z;

Tz' — ENZ'

assumed simplest proportional to population sizes and
with elementary probability Pj|i for a single person to
move

(T T4 T;,—T;;
p(Tj|z|Tzvp]|z) — <T3|z) pg|z (1 — p]|z) Il

and p;; still to be determined from detailed radiation
model



Radiation model for Pjli

define variable z as measuring ”attractivity” of a loca-
tion (or ”absorption capacity” in physical radiation)

draw IV; times from probability distribution p(z) ob-
taining maximal value z;

and use extreme value statistics tools via cumulative
distribution function

P@) = [ p() a2

hence for a fixed value z we have for INV; independent
draws

max

p(zi < Z) — p(zi,l < z,2;2 < %, o9 29, IN; < Z)
= p(z;1 < 2) - p(zi2 < 2) .. - p(2i N, < 2)

= (P(2))"



Radiation model for Pjli

define variable z as measuring ”attractivity” of a loca-
tion (or ”absorption capacity” in physical radiation)

draw IV; times from probability distribution p(z) ob-
taining maximal value z;

and use extreme value statistics tools via cumulative
distribution function

P@) = [ p() a2

hence for a fixed value z we have for INV; independent
draws

p(z]"%* = z) = N;- P(2)"i " p(z)

with p(z) = dl;iz), hence all expressed via cumulative
distribution function P(z)



Description of ”absorption” process

1) Emit at x; a particle with attractivity value z;"9%.

(The higher the population size IN; the higher z;"%% is
likely to be).

2) Absorb not at any location x; with attractivity
zp 4 < 2% in a circle with radius of distance

rik = ||z — 4]

3) Only absorb at location x; where the attractivity
is zMar ~ z,{"’aw at the minimal distance

i o= |lzs — 25|



Description of ”absorption” process
1) The probability p(z;"%" = z) of drawing z]"%" to
be of value z at location z; with population size Nj 1s
given by
dP(z)
dz

2) The probability p(Ag.r, <r;; 2 < #) of not being

absorbed at any location xj due to 29" < 2% is

given by

D( /\ ma,zl: < z) = P(2)% with Sij = Z Ny,
k:rik<rzg k:rik<rij

P97 = z) = Nj- P(z)Ni~t,

3) The probability p(zma’m > z) of being absorbed at
nearest location x; Wlth z;"’a’w > 2" is given by

Pz > 2) = 1-p(z]""® < z) = 1— P(x)"



Description of ”absorption” process

hence the elementary probability Pj|i of being emit-
ted in x; and absorbed in z; is given by the three

contributions

© @)
Pjli = /0 p(z"% = z) - p(/\ z2p < z) - p(z;-naw > z) dz
k



Description of ”absorption” process

hence the elementary probability Pj|i of being emit-
ted in x; and absorbed in Z; is given by the three
contributions

©.@)
Pjli = /0 p(z" = z) - p(/\ zp < z) - p(z;f"’a’a3 > z) dz
k

B /OOO N;P(2)Ni71p(z) - P(2)%i - (1 — P(2)") d=
_ N [ (p(x\Nitsii—1 _ p(\Nitsij+N;—1 dpP
=N, [ (P P(=) )

dz

1

_ Nz (PNi_I_Sij_l . PNz_l_SZJ_'_N]_l) dP
0

dz

1 1
_ NiNj
(IN; + 845) (IN; + Nj + s55)




Mean connectivity (T};)

the mean connectivities between provinces (Tj|,,;) are
now easily obtained from the binomial probabilities

T i T,—T

p(T;5|T5, pji) = ( m) szl (1 —pjj)° 7

with elementary probabilities Pj|; as calculated above
N;N;

(Vi + 845) (N; + Nj + s45)

giving with T; = eN;

Pjli =

N;N;
(IN; + 835) (N; + Nj + s;5)

to be calculated for all n = 76 provinces in Thailand
and its population sizes INV; and its distances Tij 1=

||z; — z;|| from the coordinates z; given in the World
Geodetic System 1984 (WGS 84)

(T;15) = T - pjjs = €Ny -



Plugging <Tj|i> into epidemiological models

single province models with import g;
X; = iz(Xfw Qi)

become depending on infection levels and connectivi-
ties in other provinces

= f;( X4, 0i({(Tj15)5 X51))
e.g. in SIS model with S; = (IV; — I;)

: B;
I; = Z(I + 0iIN;)S; — oI
becomes
I.,,: IBZ I S OtiI,,:
N’L
n

+ 3 ﬁJI T|z—+ Z @|9N S,

J= 1,J7éz Jj= 1,3#2



Plugging <Tj|i> into epidemiological models

single province models with import g;
X; = iz(Xfw Qi)

become depending on infection levels and connectivi-
ties in other provinces

X; = f,(Xy, 0:({(T5), X;3}))
e.g. in SIS model with S; = (NN; — I)

I = —(I; + 0;N;) S; — oI,



New data via DENFREE:
34 years of DHF up to today, all provinces

Chiang
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Chiang Mai
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Phrae Bueng Kan

Lamphun
Nong Khal

Uttaradit
Udon Thani
0 Sakon Nak
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iphu
Tak G i i
KhonKaen  [-a8s  Mukdahan
bun

hamggaeng-
et

Phichit
Maha- sothon
Chaiyaphum Sarakham A

Uthaithani

Chainat Lopbur Nakhon- Ratchathani
Ratchasima e Sisaket

chaburi

Pattani

Ya3 arattiiv

Thailand with 77 changwats (provinces)



Implementation of the model for Thailand

-500 0 500

locations x; and connectivities T7|; calculated

|2

power law statistics in preparation



One word of caution

the elementary probabilities are pj|; are in the bino-
mial distribution normalized via q]|z =1—1p:; jli being

the probability of being emitted in 2 but not absorbed
in 7, and trivially Pjli + 4ji = 1

but along a finite network of n nodes the Pj|i give
° N;N; N;

2. PiliT 2 NTsaNAN s~ N
j=Lj#i jetgpi N T sig) (Nt Nj+s35) - N

which is only approximately normalized in large net-
works with small nodes each via

NZ/N — 0 for N; K N

but a small probability INV;/N remains for particles to

be emitted from 2 and not being absorbed in any other
node, hence leaving any finite network




