Power law jumps and power law waiting times, fractional calculus and human mobility in epidemiological systems

Nico Stollenwerk

Mathematical Biology and Statistics Group

Centro de Matemática, Aplicações Fundamentais e Investigação Operacional (CMAF-CIO) Univ. Lisboa

Simplest epidemiological processes

epidemic process: SIS

$$egin{array}{c} S+I & \stackrel{eta}{\longrightarrow} I+I \ I & \stackrel{lpha}{\longrightarrow} S \end{array}$$

epidemic process: SIR

$$egin{array}{c} S+I \stackrel{eta}{\longrightarrow} I+I \ I \stackrel{\gamma}{\longrightarrow} R \ R \stackrel{lpha}{\longrightarrow} S \end{array}$$

Susceptible-Infected-Recovered epidem.: SIR

$$egin{array}{c} S+I & \stackrel{eta}{\longrightarrow} I+I \ I & \stackrel{\gamma}{\longrightarrow} R \ R & \stackrel{lpha}{\longrightarrow} S \end{array}$$

gives ODE system

$$egin{aligned} rac{d}{dt}\,S &= lpha R - rac{eta}{N}\,SI \ rac{d}{dt}\,I &= rac{eta}{N}\,SI - \gamma I \ rac{d}{dt}\,R &= \gamma I - lpha R \end{aligned}$$

SIR system with seasonality

$$egin{aligned} rac{d}{dt}\,S &= lpha R - rac{eta(t)}{N}\,SI \ & rac{d}{dt}\,I \,= rac{eta(t)}{N}\,SI - \gamma I \ & rac{d}{dt}\,R \,= \, \gamma I - lpha R \end{aligned}$$

with seasonal forcing of the infection rate

$$eta(t) = eta_0 \cdot (1 + \eta \cdot cos(\omega \cdot t))$$

SIR system with seasonality

time series of I(t)

time series of S(t)

state space plot from time series I(t) versus S(t)

SIR system with seasonality

time series of I(t)

time series of S(t)

deterministic chaos

Epidemiological systems with various qualitative features

measles in New York City

dengue fever cases in Chiang Mai (Thailand)

Explicit multi-strain models: example: dengue fever

Explicit multi-strain models: example: dengue fever

simplest example: two-strain SIR model including antibody dependent enhancement (ADE)

=> chaos only for large ADE parameter ϕ

biologically motivated extension including temporary cross immunity

=> chaos for much wider ϕ -region (also for "inverse ADE")

Antibody dependent enhancement, ADE

... and temporary cross-immunity

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{\phi_1eta_1}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{\gamma}{\longrightarrow} R_1 \ R_1 & \stackrel{lpha}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{eta_2}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{\phi_2eta_2}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{\gamma}{\longrightarrow} R \end{aligned}$$

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{oldsymbol{\phi_1}{eta_1}}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{\gamma}{\longrightarrow} R_1 \ R_1 & \stackrel{lpha}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{eta_2}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{oldsymbol{\phi_2}{eta_2}}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{\gamma}{\longrightarrow} R \end{aligned}$$

Transition rates for two-strain SIR model with ADE and temporary cross immunity

$$egin{aligned} S+I_1 & \stackrel{eta_1}{\longrightarrow} I_1+I_1 \ S+I_{21} & \stackrel{oldsymbol{\phi_1}{eta_1}}{\longrightarrow} I_1+I_{21} \ I_1 & \stackrel{oldsymbol{\gamma}}{\longrightarrow} R_1 \ R_1 & \stackrel{oldsymbol{lpha}}{\longrightarrow} S_1 \ S_1+I_2 & \stackrel{oldsymbol{eta_2}}{\longrightarrow} I_{12}+I_2 \ S_1+I_{12} & \stackrel{oldsymbol{\gamma}}{\longrightarrow} I_{12}+I_{12} \ I_{12} & \stackrel{oldsymbol{\gamma}}{\longrightarrow} R \end{aligned}$$

Multi-strain model for dengue fever

$$\frac{dS}{dt} = -\frac{\beta_1}{N}S(I_1 + \phi_1 I_{21}) - \frac{\beta_2}{N}S(I_2 + \phi_2 I_{12}) + \mu(N - S)$$

$$\frac{dI_1}{dt} = \frac{\beta_1}{N}S(I_1 + \phi_1 I_{21}) - (\gamma + \mu)I_1$$

$$\frac{dI_2}{dt} = \frac{\beta_2}{N}S(I_2 + \phi_2 I_{12}) - (\gamma + \mu)I_2$$

$$\frac{dR_1}{dt} = \gamma I_1 - (\alpha + \mu)R_1$$

$$\frac{dR_2}{dt} = \gamma I_2 - (\alpha + \mu)R_2$$

$$\frac{dS_1}{dt} = -\frac{\beta_2}{N}S_1(I_2 + \phi_2 I_{12}) + \alpha R_1 - \mu S_1$$

$$\frac{dS_2}{dt} = -\frac{\beta_1}{N}S_2(I_1 + \phi_1 I_{21}) + \alpha R_2 - \mu S_2$$

$$\frac{dI_{12}}{dt} = \frac{\beta_2}{N}S_1(I_2 + \phi_2 I_{12}) - (\gamma + \mu)I_{12}$$

$$\frac{dI_{21}}{dt} = \frac{\beta_1}{N}S_2(I_1 + \phi_1 I_{21}) - (\gamma + \mu)I_{21}$$

$$\frac{dR}{dt} = \gamma(I_{12} + I_{21}) - \mu R$$

Bifurcations for changing ϕ

Bifurcation diagram

bifurcation diagram for $\alpha=2$

i.e. $\frac{1}{2}$ year of temporary cross-immunity

Lyapunov spectrum versus bifurcation diagram

Bifurcation analysis via continuation: AUTO

Comparing AUTO, Lyapunov spectra and numerical bifurcation diagrams: coexisting attractors found, isolas

Including seasonality gives time series comparable to data

non-seasonal model in chaotic region

seasonality preserves chaotic pattern

Data matching: compare simulations with data

Chiang Mai

Krung Tep ("Bangkok")

Comparing 2-strain with 4-strain models

primary versus secondary infection drives the dynamics more than the exact number of strains

Model comparison: 2-strain versus 4-strain models

2-strain model versus Chiang Mai data

4-strain model versus Chiang Mai data

European Union project DENFREE: "Dengue reasearch Framework for Resisting Epidemics in Europe"

5 years project, start January 2012

together with 2 more EU project "the largest financial effort on dengue research world wide"

European Union project DENFREE: "Dengue reasearch Framework for Resisting Epidemics in Europe"

5 years project, start January 2012

together with 2 more EU project "the largest financial effort on dengue research world wide"

CMAF is leading Work Package 4:
"Descriptic and predictive models for dengue fever"

Dengue fever outbreak on Madeira, Portugal, 2012 more than 2000 autochtonous cases detected

Dengue fever outbreak on Madeira, Portugal, 2012 more than 2000 autochtonous cases detected

European Center for Disease Control (ECDC):

"The largest dengue outbreak in Europe
since the 1920th in Greece"

For data analysis: stochastic modelling

Basic probability theory

joint probability

marginal distribution

$$p(x) = \int p(x,y) \ dy$$

Bayes' rule

$$p(x,y) = p(x|y) \cdot p(y)$$

distribution that an event x_0 is given with certainty is $p(x) = \delta(x - x_0)$ with Dirac's delta-function

$$\int_a^b f(x) \cdot \delta(x - x_0) \ dx = f(x_0)$$

for x_0 between a and b

joint probability to find I_{n+1} infected at time $t + \Delta t$ and I_n at t

$$p(I_{n+1},I_n)$$

marginal distribution to find only one of the variables no matter what the other variable does

$$p(I_{n+1}) = \sum_{I_n=0}^N p(I_{n+1}, I_n)$$

Bayes' rule gives conditional probability $p(I_{n+1}|I_n)$ for I_{n+1} knowing for sure I_n times $p(I_n)$

$$p(I_{n+1},I_n)=p(I_{n+1}|I_n)\cdot p(I_n)$$

giving a dynamic evolution equation for probabilities of infected $p(I_n)$ at time t into $p(I_{n+1})$ at time $t + \Delta t$

$$p_{t+\Delta t}(I_{n+1}) = \sum_{I_n=0}^N p(I_{n+1}|I_n) \cdot p_t(I_n)$$

equation

$$p_{t+\Delta t}(I_{n+1}) = \sum_{I_n=0}^{N} p(I_{n+1}|I_n) \cdot p_t(I_n)$$

is a Perron-Frobenius type equation, and defines a time discrete Markov process

differential quotient gives time continous Markov process

$$rac{p_{t+\Delta t}(I) - p_t(I)}{\Delta t} pprox rac{d}{dt} \ p(I)$$

hence inserting time discrete version with $I:=I_{n+1}$ and $\tilde{I}:=I_n$

$$rac{p_{t+\Delta t}(I)-p_t(I)}{\Delta t} = \sum_{ ilde{I}=0}^{N} \left(rac{1}{\Delta t} \ p(I| ilde{I})
ight) p_t(ilde{I}) - rac{1}{\Delta t} \ p_t(I)$$

and inserting normalization of conditioned probability $\sum_{\tilde{I}=0}^{N} p(\tilde{I}|I) = 1$ into the last term gives

$$rac{d}{dt} \, p(I) = \sum_{ ilde{I}=0}^N w_{I| ilde{I}} \, p_t(ilde{I}) - \sum_{ ilde{I}=0}^N w_{ ilde{I}|I} \, p_t(I)$$

with transition rates $w_{I| ilde{I}} := \left(rac{1}{\Delta t} \ p(I| ilde{I})
ight)$

equation

$$rac{d}{dt} \, p(I) = \sum_{ ilde{I}=0, ilde{I}
eq I}^N w_{I| ilde{I}} \, p_t(ilde{I}) - \sum_{ ilde{I}=0, ilde{I}
eq I}^N w_{ ilde{I}|I} \, p_t(I)$$

is also called master equation and defines a time continuous state discrete Markov process

SIS epidemic

stochastic process

$$egin{array}{ccc} S+I & \stackrel{eta}{\longrightarrow} & I+I \ I & \stackrel{lpha}{\longrightarrow} & S \end{array}$$

for variable I and S = N - I = probab. p(I, t)

$$egin{aligned} rac{d}{dt} \ p(I,t) &= rac{eta}{N} (I-1)(N-(I-1)) \ p(I-1,t) + lpha(I+1) \ p(I+1,t) \ &- \left(rac{eta}{N} I(N-I) + lpha I
ight) \ p(I,t) \end{aligned}$$

mean $\langle I \rangle := \sum_{I=0}^{N} I \cdot p(I,t)$

$$rac{d}{dt} \, raket{I} = (eta - lpha) \langle I
angle - rac{eta}{N} \langle I^2
angle$$

and only in mean field approx. $var := \langle I^2 \rangle - \langle I \rangle^2 \approx 0$

$$rac{d}{dt} \hspace{0.1cm} \langle I
angle = rac{eta}{N} \langle I
angle (N - \langle I
angle) - lpha \langle I
angle$$

we obtain closed ODE

SIR epidemic

stochastic process

$$egin{array}{cccc} S+I & \stackrel{eta}{\longrightarrow} & I+I \ I & \stackrel{\gamma}{\longrightarrow} & R \ R & \stackrel{lpha}{\longrightarrow} & S \end{array}$$

for variables S, I and R = N - S - I => probab. p(S, I, t)

$$egin{split} rac{d}{dt} \ p(S,I,t) &= rac{eta}{N} (I-1)(S+1) \ p(S+1,I-1,t) \ &+ \gamma (I+1) \ p(S,I+1,t) \ &+ lpha (N-(S+1)-I) \ p(S+1,I,t) \ &- \left(rac{eta}{N} SI + \gamma I + lpha (N-S-I)
ight) \ p(S,I,t) \end{split}$$

Short term predictability, long term unpredictability

simulations with different initial conditions

implications for data analysis: Maximum Likelihood Iterated Filtering (MIF) is choice for such systems (Ionides et al 2006/ Bretó et al. 2009)

Parameter estimation in dengue: scaling with noise, importance of import

Chiang Mai $N \approx 1$ mio.

Thailand $N \approx 60 \text{ mio.}$

North $N \approx 6$ mio

South East Asia $N \approx 250$ mio

Individual based models

Individual based models basic epidemic model: SIR

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{\gamma}{\longrightarrow} R_i \ R_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

Individual based models example: stochastic 2 dimensional SIR epidemic

S green, I red, R blue

Individual based models example: stochastic 2 dimensional SIRI epidemic

S green, I red, R blue

Master equation for spatial SIS model consider as example again SIS epidemic model

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

now at lattice site $i \in \{1, ..., N\}$ an infected $I_i = 1$, or not $I_i = 0$ hence $S_i := 1 - I_i = 1$, stochastic dynamics now given for variable $I_i \in \{0, 1\}$

Master equation for spatial SIS model consider as example again SIS epidemic model

$$egin{aligned} S_i + I_j & \stackrel{eta}{\longrightarrow} I_i + I_j \ I_i & \stackrel{lpha}{\longrightarrow} S_i \end{aligned}$$

now at lattice site $i \in \{1, ..., N\}$ an infected $I_i = 1$, or not $I_i = 0$ hence $S_i := 1 - I_i = 1$, stochastic dynamics now given for variable $I_i \in \{0, 1\}$

stochastic dynamics now given for variables $I_i \in \{0, 1\}$ for $i \in \{1, ..., N\}$

Master equation for spatial SIS model

stochastic dynamics now given for variables $I_i \in \{0, 1\}$ for $i \in \{1, ..., N\}$

$$egin{aligned} rac{d}{dt} & p & (I_1,I_2,...,I_N,t) \ & = \sum_{i=1}^N eta \left(\sum_{j=1}^N J_{ij} I_j
ight) I_i & p(I_1,...,1-I_i,...,I_N,t) \ & + \sum_{i=1}^N lpha (1-I_i) & p(I_1,...,1-I_i,...,I_N,t) \ & - \sum_{i=1}^N \left[eta \left(\sum_{j=1}^N J_{ij} I_j
ight) (1-I_i) + lpha I_i
ight] & p(I_1,...,I_i,...,I_N,t) \end{aligned}$$

with adjacency matrix $J_{ij} \in \{0, 1\}$

Clusters and their dynamics

total number of infected individuals on the lattics

$$[I] := \sum_{i=1}^N \ I_i$$

total number of susceptibles

$$[S]:=\sum_{i=1}^N \ (1-I_i)$$

total number of pairs

$$[II] := \sum_{i=1}^N \sum_{j=1}^N \ J_{ij} \ I_i \cdot I_j$$

triples

$$[III] := \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ J_{ij} J_{jk} \cdot I_{i} I_{j} I_{k}$$

Clusters and their dynamics

triangles

$$[\Delta] := \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \ J_{ij} J_{jk} J_{ki} \cdot I_{i} I_{j} I_{k}$$

space averages, e.g. $[I] := \sum_{i=1}^{N} I_i$, depend on the ensemble $(I_1, ..., I_N)$, hence define ensemble average

$$\langle I
angle (t) := \sum_{I_1=0}^1 ... \sum_{I_N=0}^1 \left[I
ight] p(I_1,...,I_N,t)$$

and generally for any function $f = f(I_1, ..., I_N)$

$$\langle f
angle (t) := \sum_{I_1=0}^1 ... \sum_{I_N=0}^1 \ f(I_1,...,I_N) \ p(I_1,...,I_N,t)$$

then time evolution to calculate from master equation

$$rac{d}{dt}\langle f
angle(t):=\sum_{I_{1}=0}^{1}...\sum_{I_{N}=0}^{1}\;f(I_{1},...,I_{N})\;rac{d}{dt}p(I_{1},...,I_{N},t)$$

local mean value dynamics

$$egin{aligned} rac{d}{dt}raket{I_i}&:=\sum_{I_1=0}^1...\sum_{I_N=0}^1I_i &rac{d}{dt}\,p(I_1,...,I_N,t)\ &=&...\ &=η\sum_{j=1}^N\,J_{ij}\langle I_j(1-I_i)
angle-lpha\langle I_i
angle\ &=η\sum_{j=1}^N\,J_{ij}\langle S_iI_j
angle-lpha\langle I_i
angle \end{aligned}$$

global mean value dynamics

$$egin{aligned} rac{d}{dt} ra{I} &= \sum_{i=1}^N rac{d}{dt} ra{I_i} \ &= b \left(Q \langle I
angle - \langle II
angle_1
ight) - a \langle I
angle \ &= b \langle SI
angle_1 - a \langle I
angle \end{aligned}$$

using $Q_i := \sum_{j=1}^{N} J_{ij}$ number of sites connected to site i, and for regular lattices $Q_i = Q$ constant

global mean value dynamics

$$egin{array}{l} rac{d}{dt} \left\langle I
ight
angle &= b \left(Q \langle I
angle - \langle II
angle_1
ight) - a \langle I
angle \ &= b \langle SI
angle_1 - a \langle I
angle \end{array}$$

contains pair expectations $\langle II \rangle_1 = \sum_{i=1}^N \sum_{j=1}^N J_{ij} \langle I_i I_j \rangle$ hence to calculate dynamics for pairs

$$rac{d}{dt} \ \langle II
angle_1 = \sum_{i=1}^N \sum_{j=1}^N \ J_{ij} rac{d}{dt} \langle I_i I_j
angle$$

giving

$$egin{array}{l} rac{d}{dt} \, \langle II
angle_1 &= \, 2b \left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a \langle II
angle_1 \ &= \, 2b \langle ISI
angle_{1,1} - 2a \langle II
angle_1 \end{array}$$

dynamics for pairs

$$egin{array}{ll} rac{d}{dt} \, \langle II
angle_1 &= \, 2b \left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a \langle II
angle_1 \ &= \, 2b \langle ISI
angle_{1,1} - 2a \langle II
angle_1 \end{array}$$

now includes triples

$$\langle ISI
angle_{1,1}:=\sum_{i=1}^N\sum_{j=1}^N\sum_{k=1}^N J^1_{ij}J^1_{jk}\langle I_i(1-I_j)I_k
angle$$

or longer range correlations

$$\langle II
angle_2 := \sum_{i=1}^N \sum_{k=1}^N \underbrace{\left(\sum_{j=1}^N J_{ij} \ J_{jk}
ight)}_{=:(J^2)_{ik}} \langle I_iI_k
angle$$

Approximating pairs

global mean value dynamics contains pairs

$$rac{d}{dt}\left\langle I
ight
angle \,=\,b\left(Q\langle I
angle - \langle II
angle_1
ight) - a\langle I
angle$$

which can be approximated by an interaction of I_i not with its neigbours I_j but with an average of all other sites $\langle I \rangle$

$$\sum_{j=1}^{N} \ J_{kj} I_{j} pprox \sum_{j=1}^{N} \ J_{kj} \ rac{\langle I
angle}{N}$$

called "interacting with a mean field" instead of its neighbours directly

Approximating pairs

global mean value dynamics contains pairs

$$rac{d}{dt}\left\langle I
ight
angle \,=\,b\left(Q\langle I
angle -\langle II
angle_1
ight)-a\langle I
angle$$

which can be approximated by an interaction of I_i not with its neigbours I_j but with an average of all other sites $\langle I \rangle$

$$\sum_{j=1}^{N} \, J_{kj} I_{j} pprox \sum_{j=1}^{N} \, J_{kj} \, rac{\langle I
angle}{N}$$

called "interacting with a mean field" instead of its neighbours directly, hence

mean field approximation

Mean field approximation

technically

$$egin{aligned} \langle II
angle_1 &= \langle \sum_{i=1}^N \sum_{j=1}^N J_{ij}I_iI_j
angle = \langle \sum_{i=1}^N I_i \sum_{j=1}^N J_{ij}I_j
angle \ &pprox \langle \sum_{i=1}^N I_i rac{Q}{N} \cdot \langle I
angle
angle = rac{Q}{N} \cdot \langle I
angle^2 \end{aligned} \ = rac{Q}{N} \cdot \langle I
angle^2 \end{aligned}$$

giving in the dynamics of the mean a closed ODE

$$egin{aligned} rac{d}{dt} ra{I} &= b \left(Q \langle I
angle - rac{Q}{N} \langle I
angle^2
ight) - a \langle I
angle \ &= rac{b Q}{N} ra{I} race (N - \langle I
angle) - a \langle I
angle \end{aligned}$$

Mean field approximation

technically

$$egin{aligned} \langle II
angle_1 &= \langle \sum_{i=1}^N \sum_{j=1}^N J_{ij}I_iI_j
angle = \langle \sum_{i=1}^N I_i \sum_{j=1}^N J_{ij}I_j
angle \ &pprox \langle \sum_{i=1}^N I_i rac{Q}{N} \cdot \langle I
angle
angle = rac{Q}{N} \cdot \langle I
angle^2 \ &= rac{Q}{N} \cdot \langle I
angle^2 \end{aligned}$$

giving in the dynamics of the mean a closed ODE

$$egin{aligned} rac{d}{dt} ra{I} &= b \left(Q \langle I
angle - rac{Q}{N} \langle I
angle^2
ight) - a \langle I
angle \ &= rac{b Q}{N} ra{I} race (N - \langle I
angle) - a \langle I
angle \end{aligned}$$

our famous ODE of the SIS system from before with eta = bQ

Approximating triples into pairs

global dynamics dynamics contains triples

$$egin{array}{ll} rac{d}{dt} \, \langle II
angle_1 &= \, 2b \left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a \langle II
angle_1 \ &= \, 2b \langle ISI
angle_{1,1} - 2a \langle II
angle_1 \end{array}$$

idea of approximation

$$\langle SIR
angle pprox rac{\langle SI
angle \cdot \langle IR
angle}{\langle I
angle}$$

is basically a Bayes' rule now for conditioned mean

values
$$\langle I_i|I_j
angle :=\sum\limits_{I_i=0}^1 I_i\; p(I_i|I_j),$$
 namely

$$\langle I_i I_j
angle = \langle I_i | I_j = 1
angle \cdot \langle I_j
angle$$

respecively for triples

$$\langle I_i I_j I_k \rangle = \langle I_i | I_j \!=\! 1, I_k \!=\! 1 \rangle \cdot \langle I_j I_k
angle$$

Approximating triples into pairs

essential approximation: the mean at location i depends on its neighbour j, but not on the next neighbour k

$$\langle I_i|I_j\!=\!1,I_k\!=\!1
anglepprox\langle I_i|I_j\!=\!1
angle$$

giving

$$\langle I_i I_j I_k
angle pprox rac{\langle I_i I_j
angle}{\langle I_j
angle} \cdot \langle I_j I_k
angle$$

and then to pull up to global quantities

Dynamics in pair approximation

from the original system

$$egin{aligned} rac{d}{dt}\langle I
angle &= b\left(Q\langle I
angle - \langle II
angle_1
ight) - a\langle I
angle \ & \ rac{d}{dt}\,\langle II
angle_1 &= 2b\left(\langle II
angle_2 - \langle III
angle_{1,1}
ight) - 2a\langle II
angle_1 \end{aligned}$$

in pair approximation we obtain for densities

$$egin{array}{ll} x := \langle I
angle / N & \in [0,1] \ y := \langle II
angle_1 / (NQ) & \in [0,1] \end{array}$$

the closed ODE system

$$egin{aligned} rac{dx}{dt} &= bQ(x-y)-ax \ & rac{dy}{dt} &= 2b(Q-1)rac{(x-y)^2}{1-x} + 2b(x-y) - 2ay \end{aligned}$$

Dynamics in pair approximation

mean field, pair approximation, spatial simulation (from left to right)

Theory of accidental pathogens, paradigmatic system: bacterial meningitis

in many-strain systems with fast evolution evolution towards critical fluctuations (SOC:-)

Theory of accidental pathogens, paradigmatic system: bacterial meningitis

Muñoz et al. (2011): the "Stollenwerk-Jansen model (SJ)" is in universality class of voter model

local mean value dynamics

$$egin{aligned} rac{d}{dt}raket{I_i}&:=\sum_{I_1=0}^1...\sum_{I_N=0}^1I_i &rac{d}{dt}\,p(I_1,...,I_N,t)\ &=&...\ &=η\sum_{j=1}^N\,J_{ij}\langle I_j(1-I_i)
angle-lpha\langle I_i
angle\ &=η\sum_{j=1}^N\,J_{ij}\langle S_iI_j
angle-lpha\langle I_i
angle \end{aligned}$$

Surrogate for human contact dynamics: exchanging money :-)

reaction scheme for exchanging an item from item holder I_i to susceptible S_j to receive this item

$$S_i + I_j \xrightarrow{\chi} I_i + S_j$$
 $I_i + S_j \xrightarrow{\chi} S_i + I_j$

gives dynamics of local expectation value

$$rac{d}{dt} \left\langle I_i
ight
angle = \chi \sum_{j=1}^N \; J_{ij} \left(\left\langle I_j
ight
angle - \left\langle I_i
ight
angle
ight) =: \chi \cdot \Delta \langle I_i
angle$$

diffusion equation for regular lattices, generalizable to contact probabilities proportional to distance of individuals

"spatially restricted networks"

Surrogate for human contact dynamics: exchanging money :-)

superdiffusion via fracional Laplace operator for $\mu \leq 2$

$$rac{\partial}{\partial t}u(x,t)=\chirac{\partial^{\mu}}{\partial x^{\mu}}u(x,t)$$

defined via the Fourier transform (Riesz fractional derivative) $\frac{\partial^{\mu}}{\partial x^{\mu}}e^{ikx} := -|k|^{\mu} \cdot e^{ikx}$ in

$$rac{\partial}{\partial t} u(x,t) = \chi rac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} ilde{u}(k,t) \left(rac{\partial^{\mu}}{\partial x^{\mu}} e^{ikx}
ight) \; \mathrm{d}k$$

using convolution and with constant

$$c_{\mu} \coloneqq rac{1}{\pi} \Gamma(\mu+1) \sin\left(rac{\pi}{2}\mu
ight)$$

$$rac{\partial}{\partial t} u(x,t) = (\chi \cdot c_{\mu}) \int\limits_{-\infty}^{\infty} rac{u(y,t)}{|x-y|^{\mu+1}} \mathrm{d}y$$

as integral representation of superdiffusive Laplace

Super-diffusion in higher dimensions

Spatial spreading in epidemiological systems: Superdiffusion using fractional calculus

stochastic histogram and fractional diffusion equation

$$\langle I_i \rangle \approx u(\underline{x}_i, t)$$

Reaction-diffusion system in the SIS case Kolmogorov-Fisher type equation

dynamics for local expectation values

$$rac{d}{dt}\left\langle I_{i}
ight
angle =eta Q\langle I_{i}
angle \left(1-\langle I_{i}
angle
ight) -lpha\langle I_{i}
angle +eta(1-\langle I_{i}
angle)\cdot\Delta\langle I_{i}
angle$$

Reaction-super-diffusion system in the SIS case Kolmogorov-Fisher type equation

dynamics for local expectation values

$$rac{d}{dt}\left\langle I_{i}
ight
angle =eta Q\langle I_{i}
angle \left(1-\langle I_{i}
angle
ight)\!-\!lpha\langle I_{i}
angle\!+\!eta(1-\langle I_{i}
angle)\!\cdot\!\Delta^{rac{\mu}{2}}\langle I_{i}
angle$$

Power law jumps and power law waiting times

$$x_n = \sum_{i=1}^n \xi_i \qquad , \qquad t_n = \sum_{i=1}^n au_i$$

arrival probability $\eta(x,t)$ to have arrived at time t at the location x, jump prob. λ , waiting time prob. ψ ,

$$\eta(x,t) = \int_{-\infty}^{\infty} \lambda(x-x') \int_{0}^{t} \psi(t-t') \eta(x',t') dt' dx' + \delta(x) \delta(t)$$

then the probability p(x,t) to be at time t at location x via survival probability $\Psi(t-t'):=1-\int_{t'}^t \psi(t'')\ dt''$

$$p(x,t) = \int_0^t \Psi(t-t') \eta(x,t') \ dt'$$

with convolutions in Fourier transform respectively in Laplace transform gives

$$ilde{ar{p}}(k,s) = rac{1-ar{\psi}(s)}{s} \cdot rac{1}{1-ar{\psi}(s)\cdot ilde{m{\lambda}}(k)}$$

Power law jumps and power law waiting times

Fourier-Laplace transform

$$ilde{ar{p}}(k,s) = rac{1-ar{\psi}(s)}{s} \cdot rac{1}{1-ar{\psi}(s)\cdot ilde{m{\lambda}}(k)}$$

with power law jump and waiting time probabilities for large arguments, hence for the respective transforms

$$ar{\psi}(s) = 1 - s^{
u} \quad ext{for} \quad s o 0$$

$$ilde{oldsymbol{\lambda}}(k) = 1 - |k|^{\mu} \; ext{ for } \; |k|
ightarrow 0$$

with exponents μ and ν gives

$$ilde{ar{p}}(k,s) = rac{s^{
u-1}}{s^{
u}+|k|^{\mu}}$$

the same result as in fractional calculus

Space-time fractional diffusion equation

generalized from
$$\nu=1$$
 and $\mu=2$
$$\frac{\partial^{\nu}}{\partial t^{\nu}}u(x,t)=\chi\frac{\partial^{\mu}}{\partial x^{\mu}}u(x,t)$$

with spatial Riesz fractional derivative via Fourier transform

$$rac{\partial^{\mu}}{\partial x^{\mu}}e^{ikx}:=-|k|^{\mu}\cdot e^{ikx}$$

and temporal Caputo fractional derivative via Laplace transform

$$\left(\int\limits_0^\infty e^{-st}\left(rac{\partial^
u}{\partial t^
u}f(t)
ight)\;dt
ight):=s^
uar f(s)-s^{
u-1}f(0)$$

we obtain as Fourier-Laplace transform

$$ilde{ar{u}}(k,s)= ilde{u}(k,t_0=0)\,rac{s^{
u-1}}{s^{
u}+\chi|k|^{\mu}}$$

Space-time fractional diffusion equation

solution via Laplace-back transform to Mittag-Leffler function

$$E_{
u}(z) = \sum_{n=0}^{\infty} rac{z^n}{\Gamma(
u n + 1)}$$

with

$$\int\limits_0^\infty e^{-st}E_
u(ct^
u)\;dt=rac{s^{
u-1}}{s^
u-c}$$

and Fourier back-transform gives

$$u(x,t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ilde{u}(k,t_0) E_{
u} \left(-\chi |k|^{\mu} (t-t_0)^{
u}
ight) \mathrm{e}^{ikx} \; dk$$

Space-time fractional diffusion equation

solution

$$u(x,t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ilde{u}(k,t_0) E_{
u}\left(-\chi |k|^{\mu} (t-t_0)^{
u}
ight) \mathrm{e}^{ikx} \; dk$$

with initial condition in real space

$$u(x,t) = \int_{-\infty}^{\infty} u(y,t_0) G(x-y,t-t_0) \ dy$$

with Green's function

$$G(x-y,t-t_0) = rac{1}{\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}} \, rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{e}^{i ilde{k}z} E_
u(-| ilde{k}|^\mu) d ilde{k}$$

substituting
$$z:=rac{x-y}{\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}}$$
 and $ilde{k}:=k\chi^{rac{1}{\mu}}(t-t_0)^{rac{
u}{\mu}}$

Fast power law random numbers

waiting times with Mittag-Leffler random numbers with exponent ν

$$au = -\gamma_t \ ln(u) \left(rac{sin(
u\pi)}{tan(
u\pi v)} - cos(
u\pi)
ight)^{rac{1}{
u}}$$

and jumps with Lévy stable random numbers with exponent μ

$$\xi = \gamma_x \left(rac{-ln(u)\cdot cos(\phi)}{cos((1-\mu)\phi)}
ight)^{1-rac{1}{\mu}} rac{sin(
u\phi)}{cos(\phi)}$$

using uniformly distributed random numbers u and v on the unit interval and $\phi:=\pi\left(v-\frac{1}{2}\right)$

Fast analysis via complementary distribution fct.

e.g. survival time distribution

$$\Psi(au) := \int_{ au}^{\infty} \psi(ilde{ au}) \; d ilde{ au} = 1 - \int_{0}^{ au} \psi(ilde{ au}) \; d ilde{ au} = 1 - P(au)$$

Human mobility in epidemiological context

"radiation model"
uses human densities to model mobility

=> power laws expected

twitter data in Thailand a more direct surrogate for human mobility

=> power laws observable (?)

(as import into dengue models)

Human mobility in epidemiological models, radiation model

epidemiological models for Thai provinces \underline{x}_i and populations N_i with import ϱ_i

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

now with explicit modelling of human mobility, hence $T_{j|i}$ the number of people moving from location \underline{x}_i to \underline{x}_j via total number of travelers from \underline{x}_i

$$T_i = arepsilon N_i$$

assumed simplest proportional to population sizes and with elementary probability $p_{j|i}$ for a single person to move

$$p(T_{j|i}|T_i,p_{j|i}) = \left(rac{T_i}{T_{j|i}}
ight) p_{j|i}^{T_{j|i}} (1-p_{j|i})^{T_i-T_{j|i}}$$

and $p_{j|i}$ still to be determined from detailed radiation model

Radiation model for $p_{j|i}$

define variable z as measuring "attractivity" of a location (or "absorption capacity" in physical radiation)

draw N_i times from probability distribution p(z) obtaining maximal value z_i^{max}

and use extreme value statistics tools via cumulative distribution function

$$P(z) := \int_0^z p(ilde{z}) \; d ilde{z}$$

hence for a fixed value z we have for N_i independent draws

$$egin{aligned} p(z_i^{max} < z) &= p(z_{i,1} < z, z_{i,2} < z, ..., z_{i,N_i} < z) \ &= p(z_{i,1} < z) \cdot p(z_{i,2} < z) \cdot ... \cdot p(z_{i,N_i} < z) \ &= (P(z))^{N_i} \end{aligned}$$

Radiation model for $p_{j|i}$

define variable z as measuring "attractivity" of a location (or "absorption capacity" in physical radiation)

draw N_i times from probability distribution p(z) obtaining maximal value z_i^{max}

and use extreme value statistics tools via cumulative distribution function

$$P(z) := \int_0^z p(ilde{z}) \; d ilde{z}$$

hence for a fixed value z we have for N_i independent draws

$$p(z_i^{max} = z) = N_i \cdot P(z)^{N_i - 1} \cdot p(z)$$

with $p(z) = \frac{dP(z)}{dz}$, hence all expressed via cumulative distribution function P(z)

1) Emit at \underline{x}_i a particle with attractivity value z_i^{max} . (The higher the population size N_i the higher z_i^{max} is likely to be).

2) Absorb not at any location \underline{x}_k with attractivity $z_k^{max} < z_i^{max}$ in a circle with radius of distance $r_{ik} := ||\underline{x}_k - \underline{x}_i||$.

3) Only absorb at location \underline{x}_j where the attractivity is $z_j^{max} > z_i^{max}$ at the minimal distance $r_{ij} := ||\underline{x}_j - \underline{x}_i||.$

1) The probability $p(z_i^{max} = z)$ of drawing z_i^{max} to be of value z at location \underline{x}_i with population size N_i is given by

$$p(z_i^{max} = z) = N_i \cdot P(z)^{N_i - 1} \cdot \frac{dP(z)}{dz}$$

2) The probability $p(\bigwedge_{k:r_{ik} < r_{ij}} z_k^{max} < z)$ of not being absorbed at any location \underline{x}_k due to $z_k^{max} < z_i^{max}$ is given by

$$p(\bigwedge z_k^{max} < z) = P(z)^{s_{ij}} \quad ext{with} \quad s_{ij} = \sum_{k:r_{ik} < r_{ij}} N_k$$

3) The probability $p(z_j^{max}>z)$ of being absorbed at nearest location \underline{x}_j with $z_j^{max}>z_i^{max}$ is given by

$$p(z_j^{max} > z) = 1 - p(z_j^{max} < z) = 1 - P(z)^{N_j}$$

hence the elementary probability $p_{j|i}$ of being emitted in \underline{x}_i and absorbed in \underline{x}_j is given by the three contributions

$$p_{j|i} = \int_0^\infty p(z_i^{max} = z) \cdot p(\bigwedge_k z_k^{max} < z) \cdot p(z_j^{max} > z) \; dz$$

hence the elementary probability $p_{j|i}$ of being emitted in \underline{x}_i and absorbed in \underline{x}_j is given by the three contributions

$$\begin{split} p_{j|i} &= \int_0^\infty p(z_i^{max} = z) \cdot p(\bigwedge_k z_k^{max} < z) \cdot p(z_j^{max} > z) \; dz \\ &= \int_0^\infty N_i P(z)^{N_i - 1} p(z) \cdot P(z)^{s_{ij}} \cdot (1 - P(z)^{N_j}) \; dz \\ &= N_i \int_0^\infty \left(P(z)^{N_i + s_{ij} - 1} - P(z)^{N_i + s_{ij} + N_j - 1} \right) \; \frac{dP}{dz} \; dz \\ &= N_i \int_0^1 \left(P^{N_i + s_{ij} - 1} - P^{N_i + s_{ij} + N_j - 1} \right) \; dP \\ &= N_i \left(\frac{1}{N_i + s_{ij}} - \frac{1}{N_i + s_{ij} + N_j} \right) \\ &= \frac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})} \end{split}$$

Mean connectivity $\langle T_{j|i} \rangle$

the mean connectivities between provinces $\langle T_{j|i} \rangle$ are now easily obtained from the binomial probabilities

$$p(T_{j|i}|T_i,p_{j|i}) = \left(rac{T_i}{T_{j|i}}
ight) p_{j|i}^{T_{j|i}} (1-p_{j|i})^{T_i-T_{j|i}}$$

with elementary probabilities $p_{j|i}$ as calculated above

$$p_{j|i} = rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})}$$

giving with $T_i = \varepsilon N_i$

$$\langle T_{j|i}
angle = T_i \cdot p_{j|i} = arepsilon N_i \cdot rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})}$$

to be calculated for all n = 76 provinces in Thailand and its population sizes N_i and its distances $r_{ij} := ||\underline{x}_j - \underline{x}_i||$ from the coordinates \underline{x}_i given in the World Geodetic System 1984 (WGS 84)

Plugging $\langle T_{j|i} \rangle$ into epidemiological models

single province models with import ϱ_i

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

become depending on infection levels and connectivities in other provinces

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i(\{\langle T_j|_i\rangle, \underline{X}_j\}))$$

e.g. in SIS model with $S_i = (N_i - I_i)$

$$\dot{I}_i = rac{eta_i}{N_i}(I_i + arrho_i N_i)S_i - lpha_i I_i$$

becomes

$$egin{aligned} \dot{I}_i &= rac{eta_i}{N_i} I_i S_i - lpha_i I_i \ &+ \sum_{j=1, j
eq i}^n rac{eta_j}{N_j} I_j \cdot T_j|_i rac{S_i}{N_i} + \sum_{j=1, j
eq i}^n rac{eta_i}{N_i} T_i|_j rac{I_j}{N_j} \cdot S_i \end{aligned}$$

Plugging $\langle T_{j|i} \rangle$ into epidemiological models

single province models with import ϱ_i

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i)$$

become depending on infection levels and connectivities in other provinces

$$\underline{\dot{X}}_i = \underline{f}_i(\underline{X}_i, \varrho_i(\{\langle T_j|_i\rangle, \underline{X}_j\}))$$

e.g. in SIS model with $S_i = (N_i - I_i)$

$$oldsymbol{\dot{I}_i} = rac{eta_i}{N_i}(I_i + arrho_i N_i)S_i - lpha_i I_i$$

gives effective import

$$arrho_i = rac{1}{N_i} \sum_{j=1, j
eq i}^n \left(rac{eta_j}{eta_i} T_{j|i} + T_{i|j}
ight) rac{I_j}{N_j}$$

New data via DENFREE: 34 years of DHF up to today, all provinces

Thailand with 77 changwats (provinces)

Implementation of the model for Thailand

locations \underline{x}_i and connectivities $T_{j|i}$ calculated

power law statistics in preparation

One word of caution

the elementary probabilities are $p_{j|i}$ are in the binomial distribution normalized via $q_{j|i} := 1 - p_{j|i}$ being the probability of being emitted in i but not absorbed in j, and trivially $p_{j|i} + q_{j|i} = 1$

but along a finite network of n nodes the $p_{j|i}$ give

$$\sum_{j=1,j
eq i}^{n} p_{j|i} = \sum_{j=1,j
eq i}^{n} rac{N_i N_j}{(N_i + s_{ij})(N_i + N_j + s_{ij})} = 1 - rac{N_i}{N_i}$$

which is only approximately normalized in large networks with small nodes each via

$$N_i/N o 0 \quad ext{for} \quad N_i \ll N$$

but a small probability N_i/N remains for particles to be emitted from i and not being absorbed in any other node, hence leaving any finite network