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RNA interference (R

1. The central dogma
D

3. The RNAiI mechanism

RNA interference (RNAJ) is an important biological

Transcription . . .
mechanism in the regulation of gene expression.
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RNA interference (RNA:i)

® RNAi regulates expression of genes

@ RNAI to pathogens

first line of viral defence

@ RNAI is used in experiments to knock-out
specific genes




RNAi: history

co-suppression in petunias
C. Napoli, C. Lemieux, R. Jorgensen (1990)

quelling in mold N. crassa
C. Cogoni, G. Macino (1992)

C. elegans

S. Guo, K.J. Kemphues (1995)

SIRNA Hamilton & Baulcombe (1999)
RISC S.M. Hammond et al. (2000)
Dicer: E. Bernstein et al. (2001)
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RNAi: history

Potent and specific

genetic interference by
double-stranded RNA in
Caenorhabditis elegans

Andrew Fire*, SiQun Xu*, Mary K. Montgomery-,
Steven A. Kostas* 1, Samuel E. Driver: & Craig C. Mello#

* Carnegie Institution of Washington, Department of Embryology,
115 West University Parkway, Baltimore, Maryland 21210, USA

t Biology Graduate Program, Johns Hopkins University,

3400 North Charles Street, Baltimore, Maryland 21218, USA

+ Program in Molecular Medicine, Department of Cell Biology,
University of Massachusetts Cancer Center, Two Biotech Suite 213,
373 Plantation Street, Worcester, Massachusetts 01605, USA

MATURE|VOL 391 |19 FEERUARY 1998

2006 Nobel Prize in Physiology and Medicine:

"for their discovery of RNA interference - gene
silencing by double-stranded RNA"
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RNAi: history

RNAI was later discovered in many other species

T | Trypanosoma brucei
RS A
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RNAI in plants

@ Plant viruses - a major problem for agriculture

@ $60 bn losses worldwide annually
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Modelling assumptions

@ New are immune to infection,
they cannot express RNAI

@ Mature cells are susceptible to infection and
can induce RNAI

o recover through RISC-mediated
cleavage or RNA-directed DNA methylation

are mature cells that have
received RNA silencing signal




Model diagram

G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28-39 (2016)
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Model of the plant immune response

dS

dt - k[S(t - ‘Tl) + I"'i""'r(t - ‘Tl_)]e_m - S(f) [/U (f) + ol (f - ’Tz) + € S(t)]a

Y IONSE) = (2 + 0) — 86I(t — )],

dt

W | |
— = 0SO)I(t =) — W (t).
L

S(t) - susceptible cells
I(t) - infected cells
W(t) - warned cells

T 1 - maturation delay
T 2 - Silencing propagation delay

G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28-39 (2016)
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Model of the plant immune response

@ The model is well-posed

Theorem 2.1. Let the initial data be S(s) = Sy(s) > 0, W(s) = Wy(s) >0
for all s € [—11,0], and I(s) = Iy(s) > 0 for all s € [—79,0) with 1(0) > 0.

Then solutions S(t),I(t) and W (t) of the system (2) are non-negative for all
t > 0.

. Eo=(0,0,0) always
characteristic equation:
(u+e)(pu+o+z2)(ke e ™ — ) =0.

two stable eigenvalues plus

n=rke “te

always a positive real root
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Steady states

@ Disease-free steady state

B = (e'K(m),0,0),

€

K(m)
Theorem 4.1. Let the disease-free steady state be quven by £y = ( () , 0, U)

e(o + z)
A

(a) Gwen k < kyin, F1 is linearly asymptotically stable for all 7 > 0.

- W .

and denote kyin = . Then, we have the following

(b) Giwen k > kyin and 7pin = , Fq 15 linearly asymptotically

€
stable for 71 > Tyun, unstable for ™ < 7, and undergoes a steady-state

bifurcation at 71 = Tyin-
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Steady states
3 Ex=(SSEEW ™)

0K (11) — e( A+ )| AK(11) — €(2 + 0)]
eleA? — ONK (11) — €) + de?]

AR (11) — €z + 0)]

We=Win) = (X2 — SA(K (1) — ) + 66

dCaARUESRILEY  Crmin=miN(C), Crmax=max(C)
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Stability of E;

@ Trivial maturity 7, =0

@ Characteristic equation

[1,3 + ((Ll e HT2 + (1)2)[1’;2 + (ble_‘m + bg)ﬂg + (cle_‘“’” + Cg) =0

where

ap = 0Ql*, ay= (A+0)[*+ (25 +1)e—k,

by = 0 (0 4+ NI +[(e—k+2eS*)d+ NS*] 6 I*,

by = [(A+0)e—0k+ NS I* — ke + 2 €S,

cp= —ol"|[[kd—e(0+N)]oI*+ (kXN — €(2ep+ N\)) S* + ko€,

= Ae S*[*.
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Stability of E;
® When 7 ,=0, Routh-Hurwitz conditions for

stability
a1 +as >0, ¢g +c0 >0, (a1 +az)(by + by) > 1 + ¢

@ For T >0, iSs a root of

"LUG -+ ((1,22 — CL12 — 2()2)&?4 -+ (261(11 — 282(1,2 -+ 622 — 612)‘&}2 -+ 622 — 612 = (
@ Critical time delay

72 (Il)  wp tan (b1 —aia2)wp?+(cras+aico—bibo)w,?2—crco ™ (-J Uﬂ-

n=123; 7N

— T, (jg_)(,no) _ Kigzignpl{q-g(j) (n)}, we = wy,
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Stability of E;
@ When 7 ,=0, the for

stability takes the form

i+ ay () e ™ + ao (1) | i+ by (T1)e ™ ™ + ba(m1)| pt-ci(m1)e ™ +ea (1) =0

@When T =T ,=T , the characteristic equation

for stability takes the form

4 ay(7)e™H 4 ag(7)] 1 + [br(7)e™HT + by (T) e HT 4 b(7)] 4 1 (T)eTHT+

co(T)e™HT 4 (1) = 0

@ It does not prove possible to find closed form
analytical results for the critical time delay
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Parameter values

Table 1: Table of parameters

Symbol

Definition

Baseline values
(estimated)

Rate of infection

Growth rate

Recovery rate

Propagation rate of silencing signal
Recovery rate

Natural death rate of cells

Death rate of infected cells

Maturity time of young/proliferating tissue
Acquired immunity delay

1.5
1
0.5
0.5
1
0.3
0.6
1
1
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Stability chart
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ITy chart

Stab
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Stability chart
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Numerical simulations
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G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28-39 (2016)
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Modelling interactions between
plant viruses




Two-virus model

) — S[(A1+ 61) 1 + (A2 + 82) I3 + asAaHa + a1 A\ Hy)

dl
dt
dl

o = 12()\25' — 09 — 62) + ag Ao H> S,

aw,
dt

W,
dt

dH
— = Wa(Bi\i + fraah H) — Hi(er + paon),
dH,
dt
AWz
dt

— Il()\lS — 01 — 61) -1 al/\lHISa

= I1(01 + 6,5) — W1 [€0 + (BaA2 + Y2b2) 2 + Paazdo Ho

= Ix(02 + 02S) — Wa [0 + (Brdr + 161) 11 + fraad Hy)

= Wi(BoA2ly + Baag Ao Hy) — Ha(€g + paos),

= P101H1 + P202H2 + ’725212W1 + ’715111W2 — egWia,

G. Neofytou, Y.N. Kyrychko, KB, submitted (2016)



Rescaled two-virus model

=0 (1 = N) —uy [(L1 + dy) ug + (La + da) us + a1 Lyug + as Loz,

= Ly (ayug + ug) uy — uy (€1 + 81)

= Lo (02’&7 + u3) Uy —usg (62 + 82) ;

= Ug (dyuy + 81) — ug [(BaLa + Y2da) ug + BaagLour + €],

= U3 (d27L1 + 82) — Uj [([31 Ly + ’Yldl) Uy + Pray Liug + 80] ;

= P1Ly (a1ug + uz) us — ug (p151 + €1)

= [ Lo (02’&7 + Us) Ug — U7 (stz + 62) y

= Y1d1ugus + yodausug + p1S1Ue + P2SoUy — €oUs,
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Steady states

@ Trivial steady state E0=(0,0,0,0,0,0,0,0)

steady state Epr=(1,0,0,0,0,0,0,0)

@ Two one-virus steady states

F, = (u3, us,0,uy,0,0,0) Fs = (u3,0,us,0,us, 0,0)

steady state

. X X X * * X > X
S - (ulv u27 u37 u47 u5’ u67 u77 u8)




Steady states

@ Introduce basic reproduction numbers

® E, is feasible for Rop»l

® E- is feasible for Ro2>1

® Disease-free state is for Ro«l




Stability of the steady states

Thursday, 4 February 16

Theorem. The one-virus steady state Fy = (uj,0,u3,0,u3,0,0) with u} = (e2+ s2)/L2, u3 and uj
given by

—c1(uf) — Veq(uf) — dea(uj)co(u
262(11;)

uz =

- d2uI + 82

e , B=Lyo+dy co(uj)=uj(l-uj),

c1(u]) = A(u]) — ui[2A(u]) + B+ 1], e2(uj) = —A(uj)[A(u]) + 1.
Let x30, x31, 32 and up be defined by

x91 = 81(p1 + 1) + 2¢; — Ll(alﬁlug + uy),
T20 = (p181 + e1)(e1 + 81 — Lyul) — Liay fr(ey + s1)us,
T3z = 2u] + (Lo +dg + 1) uj + 2u? + g — 1,

T3 = dl(u;‘;)2 + [(La 4+ d2)[ui (L2 + 1) + us + eg) + da(uj + uZ — 1) + eg) uj
+eo(2ui + 2uj — 1),

z30 = Louj [dou] (2(u] + u3) + uj +eg — 1) +ujeg (Lg + 1) + 82 (2u] + u3 — 1)]
+ Louj + ug (eg + 232) .

_ s1p1t+e; 8 + ey — LluI
Lyay 3y e1 + 81 '

Then the steady state Eo is linearly asymptotically stable if and only if the following conditions
hold:

(i) 0 < uf < ug,

(ii) z30 > 0, z31 > 0, 232 > 0,

(iii) x3273, > T30.



Stability of the steady states
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Stability of the steady states
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Stability of the steady states
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Numerical simulations
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Mechanism of RNA silencing

RNase model
A T M

-
e

i

;

#mRNAs (x10%)

-

™

0 e — - W — ——
01234567 8 91011121314
# transgenes

dM B

dt

iD
‘7 = pM — aD + g»SM,
G

ds d,S

— = anl) —

dit 1 + kS
dG

dt

i —dyM — pM — bSM — goSM,

— d,S — bSM — goSM,

= bSM — d,G.

M.A.C. Groenenboom et al., PLoS Comp. Biol. 1, e21 (2005)
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garbage model

sigmoid model

([ |11

1234567 8 91011121314
# transgenes

1234567 8 91011121314
# transgenes

aM ! :
W =1- d,,,M - pM — bSM — g‘_).Sl\/I, 7 =7 (1.,,,1\/! - /)M - bSM,
. d

dD dD g G*
— M_ 1) D w < ) -_— — w_ D l O
ar ~ PM —aD+g:5M + 8,56 a P APt TG

1S ds
‘d—t = anD — d,S — bSM — gsSM — g,SG, — = anD — d,S — bSM,

. dt

dG iG g, G*
- - A R : y - P . —— b\SM - d G - s) .
T bSM — d,G — g4SG i P |+ KG2

dM




Mechanism of RNA silencing

dAt/I = mih — d M(t) — pM(t) — biS(8) M (t) — b2S(t) M (2)

—_— = pM(t) = (LD(t) -+ bQS(t o Tl)M(t s 7'1) -+ b3S(t = Tz)G(t — 7'2)
— d,S(t) — biS(E)M(t) — byS(E)M(t) — b3S(#)G(t)

— d,G(t) — bsS(t)G(t)

#Stable steady states with ny = 8 (b) #Stable steady states

# Transgenes (n4)

1.2x10°
1x10°
8 x10™
6 x10
30 40 50
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Mechanism of RNA silencing

(c) No delays with n, = 8 (d) T, = 30, T,= 20 and n, = 8

-
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c
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L
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(e) No delays with n | = 8 (f) T, = 30, T, = 20 and n, = 8

p—
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Discussion

@ Models provide significant and intuition
into the dynamics of RNAiI

@ Very important role is played by time delays

@ Spatial propagation of the silencing signal
@ Explicit dynamics of virus particles

® Details of




Applications: medical treatments

@ Immunotherapy of cancer

@ Infectious diseases: HIV, HBV ... Zika?

Hepatitis B
PDB: 1qgt
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Applications: biotechnology
@ Cell biology

knock-out of specific genes

@ Food industry
decreased carcinogens in tobacco plants

insecticides

transgenic plants

reduces
expression of
polyphenol oxidase




Thank you !




