Mathematical insights into RNA interference

Konstantin Blyuss

Department of Mathematics University of Sussex

E-mail: k.blyuss@sussex.ac.uk

Outline

Mechanism and history of RNAi RNA interference in plants Cross-infection with two viruses Oppnamics of RNA silencing Conclusions and open problems

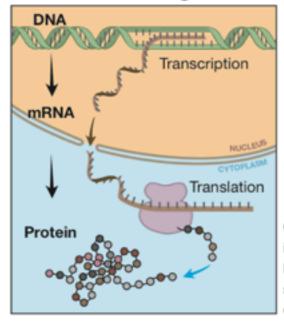
RNA interference (RNAi)

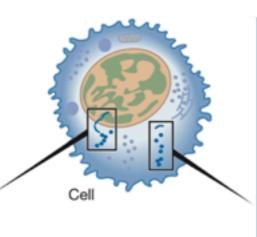
UCAUG

mRNA

RISC

1. The central dogma

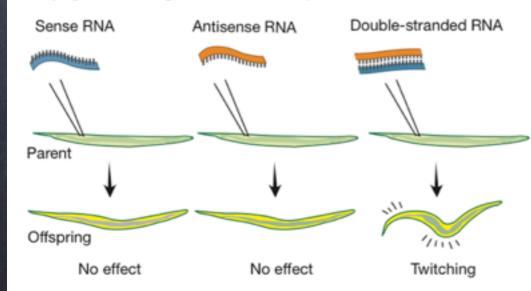




Our genome operates by sending information from double-stranded DNA in the nucleus, via singlestranded mRNA, to guide the synthesis of proteins in the cytoplasm.

2. The experiment

RNA carrying the code for a muscle protein is injected into the worm *C. elegans*. Single-stranded RNA has no effect. But when double-stranded RNA is injected, the worm starts twitching in a similar way to worms carrying a defective gene for the muscle protein.



3. The RNAi mechanism RNA interference (RNAi) is an important biological mechanism in the regulation of gene expression. Double-stranded RNA (dsRNA) binds to the protein Dicer ... Important Dicer Important biological mechanism in the regulation of gene expression.

One of the RNA strands is loaded into a RISC complex...

...and links the complex to the mRNA strand by basepairing.

mRNA is cleaved and destroyed. No protein can be synthesized.

RNA interference (RNAi)

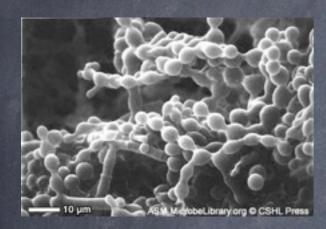
RNAi regulates expression of genes

RNAi mediates resistance to pathogens
 first line of viral defence

RNAi is used in experiments to knock-out specific genes

RNAi: history

Co-suppression in petuniasC. Napoli, C. Lemieux, R. Jorgensen (1990)



quelling in mold N. crassa C. Cogoni, G. Macino (1992)

C. elegans

S. Guo, K.J. Kemphues (1995) A. Fire et al. (1998)

siRNA RISC Dicer: Hamilton & Baulcombe (1999) S.M. Hammond et al. (2000) E. Bernstein et al. (2001)

Thursday, 4 February 16

RNAi: history

Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*

Andrew Fire*, SiQun Xu*, Mary K. Montgomery*, Steven A. Kostas*†, Samuel E. Driver‡ & Craig C. Mello‡

* Carnegie Institution of Washington, Department of Embryology, 115 West University Parkway, Baltimore, Maryland 21210, USA
† Biology Graduate Program, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
‡ Program in Molecular Medicine, Department of Cell Biology, University of Massachusetts Cancer Center, Two Biotech Suite 213, 373 Plantation Street, Worcester, Massachusetts 01605, USA

Craig Mello

Andrew Fire

NATURE VOL 391 19 FEBRUARY 1998

2006 Nobel Prize in Physiology and Medicine:

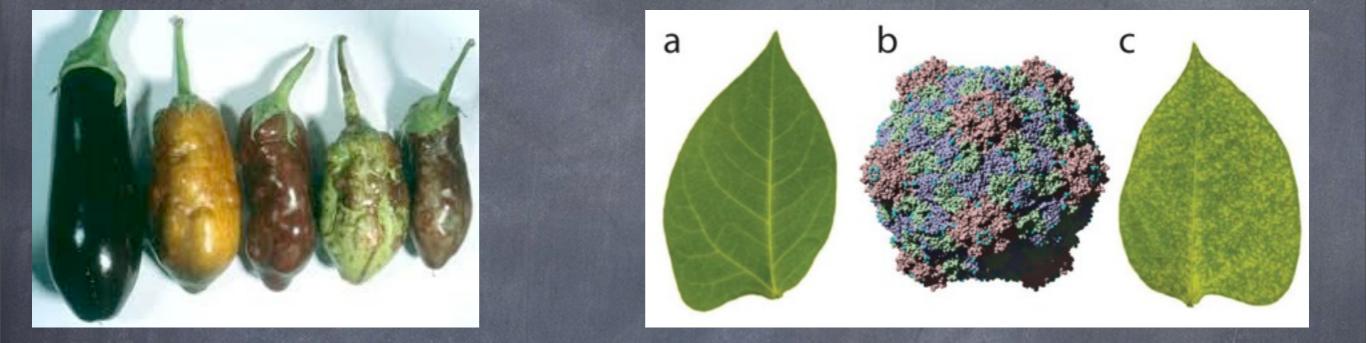
"for their discovery of RNA interference - gene silencing by double-stranded RNA"

RNAi was later discovered in many other species

Trypanosoma brucei but NOT Trypanosoma cruzi, Leishmania major, S. cerivisiae,...

Thursday, 4 February 16

RNAi in plants



Plant viruses – a major problem for agriculture

\$60 bn losses worldwide annually

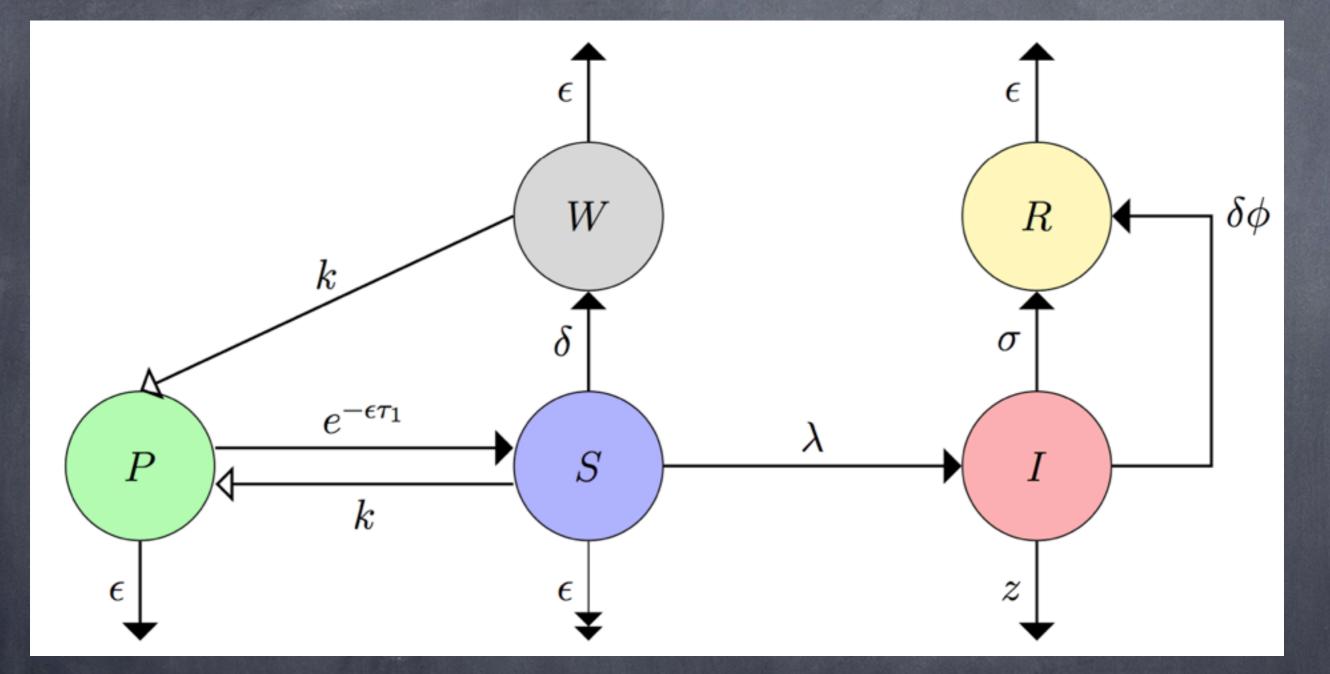
Modelling assumptions New proliferating cells are immune to infection, they cannot express RNAi

Mature cells are susceptible to infection and can induce RNAi

Infected cells recover through RISC-mediated cleavage or RNA-directed DNA methylation

Warned cells are mature cells that have received RNA silencing signal

Model diagram



G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28-39 (2016)

Thursday, 4 February 16

Model of the plant immune response

$$\frac{dS}{dt} = k[S(t-\tau_1) + W(t-\tau_1)]e^{-\epsilon\tau_1} - S(t)[\lambda I(t) + \delta I(t-\tau_2) + \epsilon S(t)],$$

$$\frac{dI}{dt} = I(t)[\lambda S(t) - (z+\sigma) - \delta\phi I(t-\tau_2)],$$

$$\frac{dW}{dt} = \delta S(t)I(t-\tau_2) - \epsilon W(t).$$

S(t) - susceptible cells I(t) - infected cells W(t) - warned cells τ_1 - maturation delay τ_2 - silencing propagation delay

G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28–39 (2016)

Model of the plant immune response

Theorem 2.1. Let the initial data be $S(s) = S_0(s) > 0$, $W(s) = W_0(s) \ge 0$ for all $s \in [-\tau_1, 0]$, and $I(s) = I_0(s) \ge 0$ for all $s \in [-\tau_2, 0)$ with I(0) > 0. Then solutions S(t), I(t) and W(t) of the system (2) are non-negative for all t > 0.

Trivial steady state E₀=(0,0,0) always unstable

characteristic equation:

$$(\mu + \epsilon)(\mu + \sigma + z)(ke^{-\epsilon\tau_1}e^{-\mu\tau_1} - \mu) = 0.$$

two stable eigenvalues plus

$$\mu = k e^{-\epsilon \tau_1} e^{-\mu \tau_1}$$

always a positive real root

Steady states
Disease-free steady state

$$E_1 = (\epsilon^{-1} K(\tau_1), 0, 0),$$

$$K(\tau_1) = k e^{-\epsilon \tau_1}$$

Theorem 4.1. Let the disease-free steady state be given by $E_1 = \left(\frac{K(\tau_1)}{\epsilon}, 0, 0\right)$

and denote $k_{\min} = \frac{\epsilon(\sigma + z)}{\lambda}$. Then, we have the following

(a) Given $k < k_{\min}$, E_1 is linearly asymptotically stable for all $\tau_1 \ge 0$. $\ln(k) - \ln(k + 1)$

(b) Given $k \ge k_{\min}$ and $\tau_{\min} = \frac{\ln(k) - \ln(k_{\min})}{\epsilon}$, E_1 is linearly asymptotically stable for $\tau_1 > \tau_{\min}$, unstable for $\tau < \tau_{\min}$ and undergoes a steady-state bifurcation at $\tau_1 = \tau_{\min}$.

Steady states Steady state E2=(S*,I*,W*)

$$S^* = S(\tau_1) = \frac{K(\tau_1)}{\epsilon} - \frac{[\delta K(\tau_1) - \epsilon(\lambda + \delta)][\lambda K(\tau_1) - \epsilon(z + \sigma)]}{\epsilon[\epsilon\lambda^2 - \delta\lambda(K(\tau_1) - \epsilon) + \delta\phi\epsilon^2]},$$

$$I^* = I(\tau_1) = \frac{\epsilon [\lambda K(\tau_1) - \epsilon(z + \sigma)]}{\epsilon \lambda^2 - \delta \lambda [K(\tau_1) - \epsilon] + \delta \phi \epsilon^2},$$

$$W^* = W(\tau_1) = \frac{\delta \left[\epsilon \delta \phi K(\tau_1) - (z + \sigma) (\delta K(\tau_1) - \epsilon(\lambda + \delta)) \left[\lambda K(\tau_1) - \epsilon(z + \sigma)\right]}{\left[\epsilon \lambda^2 - \delta \lambda (K(\tau_1) - \epsilon) + \delta \phi \epsilon^2\right]^2}.$$

 $C_{\max}=\max(C)$

Feasible when

$$\frac{\ln(k) - \ln(C_{\max})}{\epsilon} < \tau_1 < \frac{\ln(k) - \ln(C_{\min})}{\epsilon} \quad \text{where}$$
$$C = \left\{ \frac{\epsilon(z+\sigma)}{\lambda}, \frac{\epsilon(\lambda^2 + \delta\lambda + \delta\phi\epsilon)}{\delta\lambda} \right\} \quad C_{\min} = \min(C),$$

Stability of E_2 Trivial maturity $\tau_1 = 0$

Characteristic equation

$$\mu^3 + (a_1 e^{-\mu\tau_2} + a_2)\mu^2 + (b_1 e^{-\mu\tau_2} + b_2)\mu + (c_1 e^{-\mu\tau_2} + c_2) = 0$$

where

$$\begin{aligned} a_1 &= \delta \phi I^*, \quad a_2 = (\lambda + \delta) I^* + (2 S^* + 1) \epsilon - k, \\ b_1 &= \delta \phi \left(\delta + \lambda\right) I^{*2} + \left[(\epsilon - k + 2 \epsilon S^*) \phi + \lambda S^*\right] \delta I^*, \\ b_2 &= \left[(\lambda + \delta) \epsilon - \delta k + \lambda^2 S^*\right] I^* - k\epsilon + 2 \epsilon^2 S^*, \\ c_1 &= -\delta I^* \left[\left[k\delta - \epsilon \left(\delta + \lambda\right)\right] \phi I^* + \left(k\lambda - \epsilon(2\epsilon\phi + \lambda)\right) S^* + k\phi \epsilon\right], \\ c_2 &= \lambda^2 \epsilon S^* I^*. \end{aligned}$$

Stability of E₂ When τ_2 =0, Routh-Hurwitz conditions for stability $a_1 + a_2 > 0, c_1 + c_2 > 0, (a_1 + a_2)(b_1 + b_2) > c_1 + c_2$

Sor $\tau_2 > 0$, Hopf frequency is a root of

$$w^{6} + (a_{2}^{2} - a_{1}^{2} - 2b_{2})w^{4} + (2c_{1}a_{1} - 2c_{2}a_{2} + b_{2}^{2} - b_{1}^{2})w^{2} + c_{2}^{2} - c_{1}^{2} = 0$$

© Critical time delay

$$\tau_2^{(j)}(n) = \frac{1}{w_n} \left[\tan^{-1} \left(\frac{a_1 w_n^5 + (b_1 a_2 - c_1 - a_1 b_2) w_n^3 + (c_1 b_2 - b_1 c_2) w_n}{(b_1 - a_1 a_2) w_n^4 + (c_1 a_2 + a_1 c_2 - b_1 b_2) w_n^2 - c_1 c_2} \right) + (j - 1)\pi \right]$$

$$n = 1, 2, 3; j \in \mathbb{N}$$

$$\tau_2^* = \tau_2^{(j_0)}(n_0) = \min_{1 \le n \le 3, \ j \ge 1} \{\tau_2^{(j)}(n)\}, w_0 = w_{n_0}$$

Stability of E_2 When $\tau_2=0$, the characteristic equation for stability takes the form

 $\mu^{3} + \left[a_{1}(\tau_{1})e^{-\mu\tau_{1}} + a_{2}(\tau_{1})\right]\mu^{2} + \left[b_{1}(\tau_{1})e^{-\mu\tau_{1}} + b_{2}(\tau_{1})\right]\mu + c_{1}(\tau_{1})e^{-\mu\tau_{1}} + c_{2}(\tau_{1}) = 0$

When $\tau_1 = \tau_2 = \tau$, the characteristic equation for stability takes the form

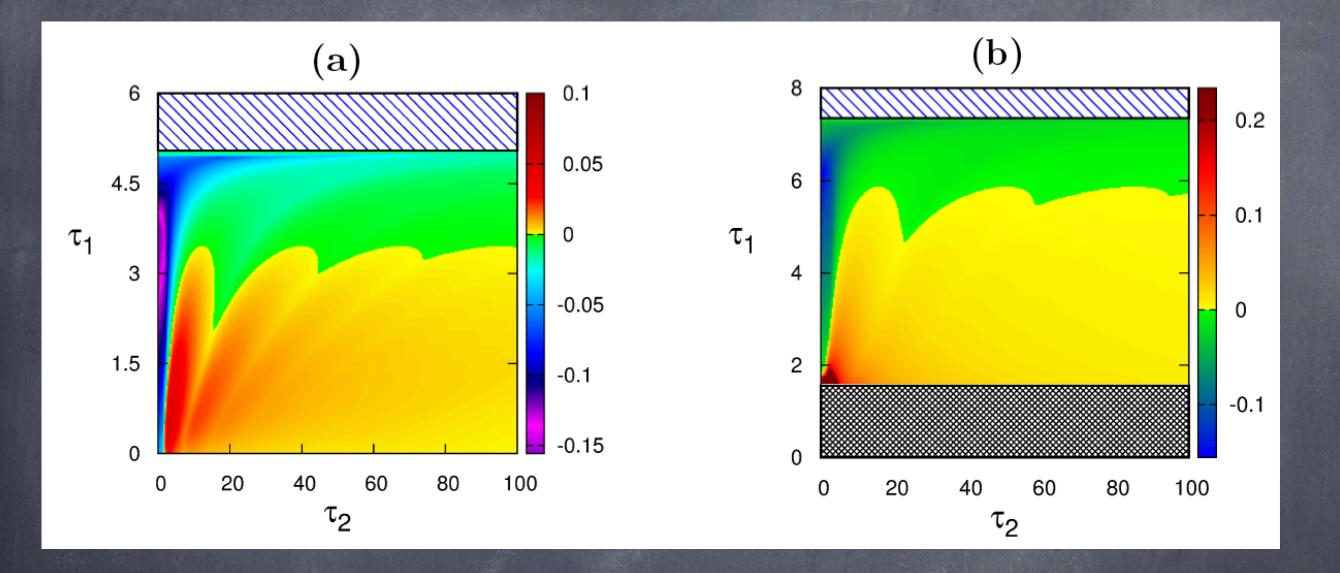
 $\mu^{3} + [a_{1}(\tau)e^{-\mu\tau} + a_{2}(\tau)]\mu^{2} + [b_{1}(\tau)e^{-\mu\tau} + b_{2}(\tau)e^{-2\mu\tau} + b_{3}(\tau)]\mu + c_{1}(\tau)e^{-\mu\tau} + c_{2}(\tau)e^{-2\mu\tau} + c_{3}(\tau) = 0$

It does not prove possible to find closed form analytical results for the critical time delay

Parameter values

Table 1: Table of parameters		
Symbol	Definition	Baseline values
		(estimated)
λ	Rate of infection	1.5
k	Growth rate	1
σ	Recovery rate	0.5
δ	Propagation rate of silencing signal	0.5
ϕ	Recovery rate	1
ϵ	Natural death rate of cells	0.3
z	Death rate of infected cells	0.6
$ au_1$	Maturity time of young/proliferating tissue	1
$ au_2$	Acquired immunity delay	1

Stability chart

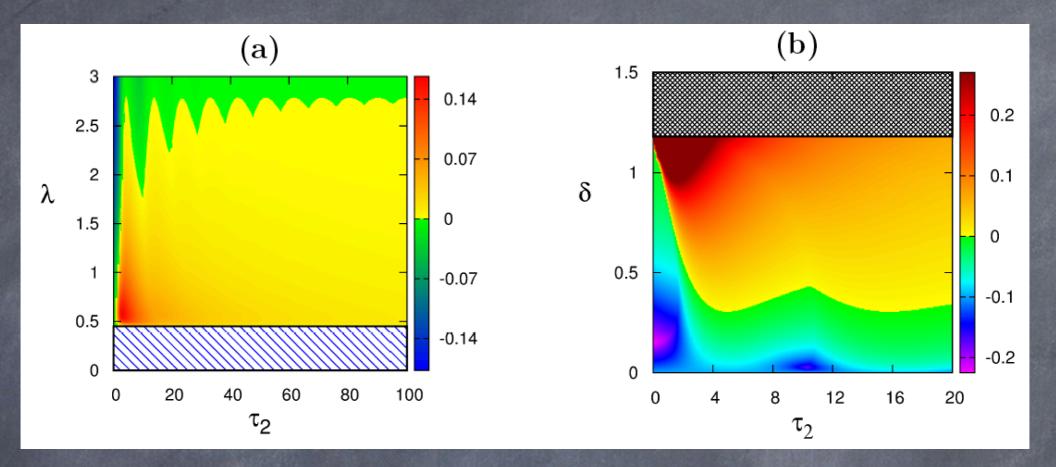


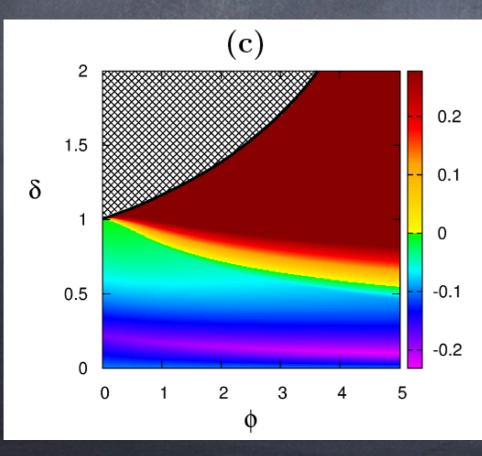
(a) k=1

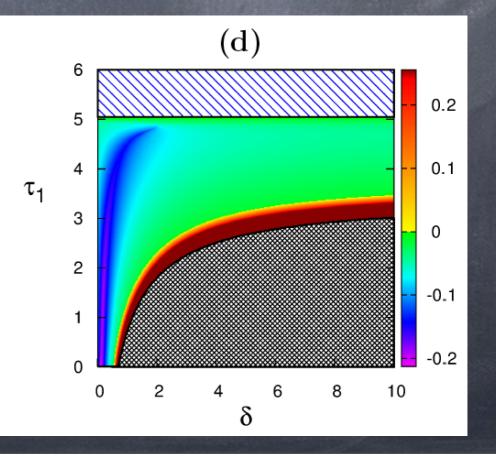
(b) k=2

Thursday, 4 February 16

Stability chart

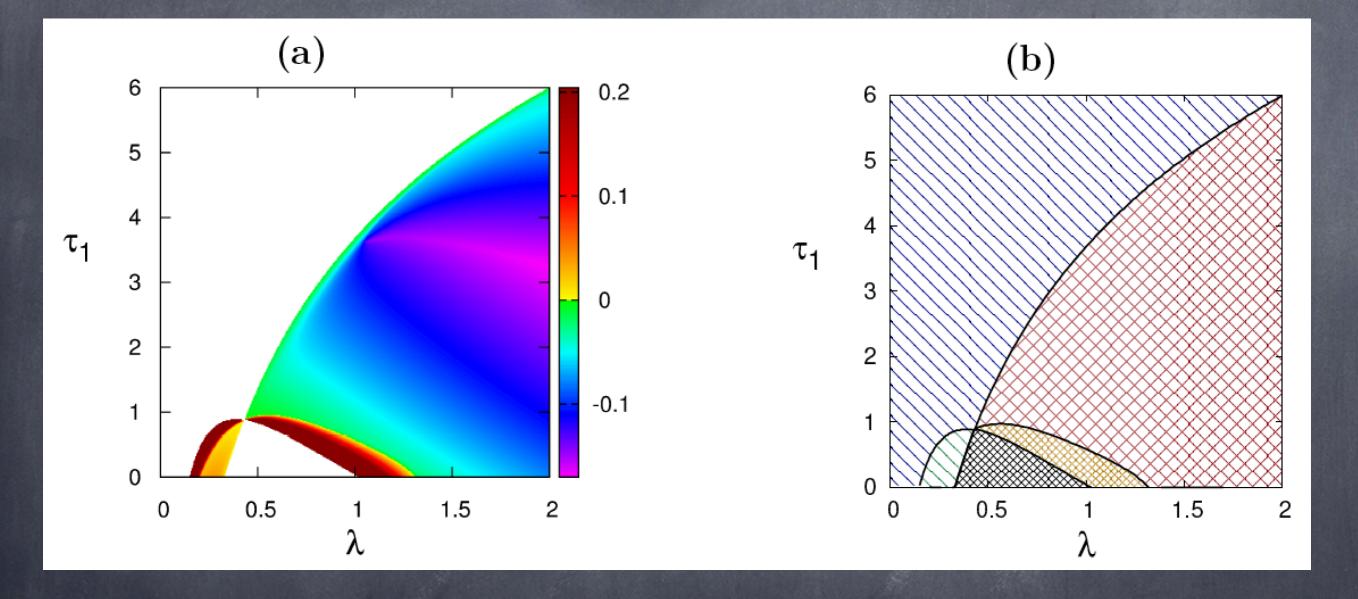




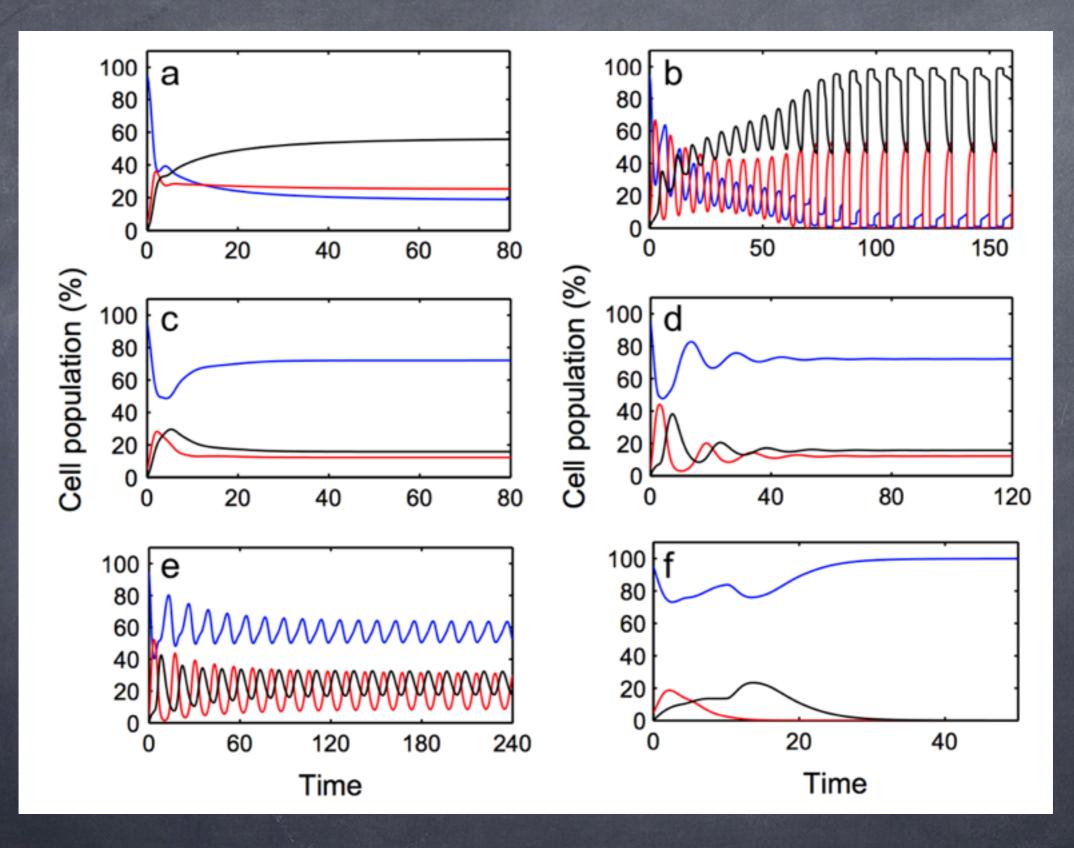


Thursday, 4 February 16

Stability chart

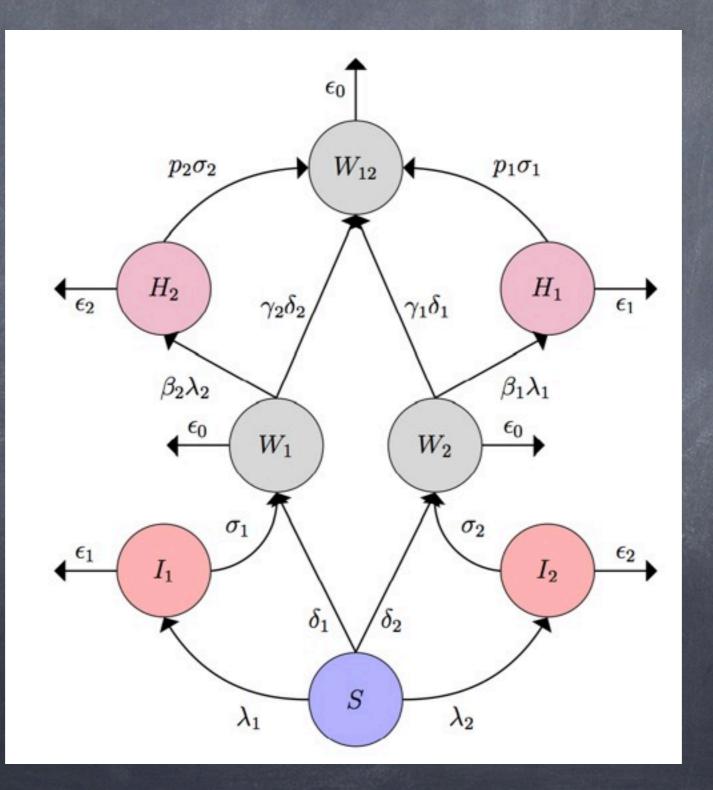


Numerical simulations



G. Neofytou, Y.N. Kyrychko, KB, J. Theor. Biol. 389, 28–39 (2016)

Modelling interactions between plant viruses



Two-virus model

$$\begin{split} \frac{dS}{dt} &= r\widehat{S}\left(1 - \frac{N}{K}\right) - S\left[(\lambda_1 + \delta_1)I_1 + (\lambda_2 + \delta_2)I_2 + a_2\lambda_2H_2 + a_1\lambda_1H_1\right],\\ \frac{dI_1}{dt} &= I_1(\lambda_1S - \sigma_1 - \epsilon_1) + a_1\lambda_1H_1S,\\ \frac{dI_2}{dt} &= I_2(\lambda_2S - \sigma_2 - \epsilon_2) + a_2\lambda_2H_2S,\\ \frac{dW_1}{dt} &= I_1(\sigma_1 + \delta_1S) - W_1\left[\epsilon_0 + (\beta_2\lambda_2 + \gamma_2\delta_2)I_2 + \beta_2a_2\lambda_2H_2\right],\\ \frac{dW_2}{dt} &= I_2(\sigma_2 + \delta_2S) - W_2\left[\epsilon_0 + (\beta_1\lambda_1 + \gamma_1\delta_1)I_1 + \beta_1a_1\lambda_1H_1\right],\\ \frac{dH_1}{dt} &= W_2(\beta_1\lambda_1I_1 + \beta_1a_1\lambda_1H_1) - H_1(\epsilon_1 + p_1\sigma_1),\\ \frac{dH_2}{dt} &= W_1(\beta_2\lambda_2I_2 + \beta_2a_2\lambda_2H_2) - H_2(\epsilon_2 + p_2\sigma_2),\\ \frac{dW_{12}}{dt} &= p_1\sigma_1H_1 + p_2\sigma_2H_2 + \gamma_2\delta_2I_2W_1 + \gamma_1\delta_1I_1W_2 - \epsilon_0W_{12}, \end{split}$$

G. Neofytou, Y.N. Kyrychko, KB, submitted (2016)

Rescaled two-virus model

$$rac{du_1}{d au} = \widehat{u}_1(1-\widehat{N}) - u_1\left[\left(L_1+d_1
ight)u_2 + \left(L_2+d_2
ight)u_3 + a_1L_1u_6 + a_2L_2u_7
ight],$$

$$\frac{du_2}{d\tau} = L_1 \left(a_1 u_6 + u_2 \right) u_1 - u_2 \left(e_1 + s_1 \right),$$

$$\frac{du_3}{d\tau} = L_2 \left(a_2 u_7 + u_3 \right) u_1 - u_3 \left(e_2 + s_2 \right),$$

$$\frac{du_4}{d\tau} = u_2 \left(d_1 u_1 + s_1 \right) - u_4 \left[\left(\beta_2 L_2 + \gamma_2 d_2 \right) u_3 + \beta_2 a_2 L_2 u_7 + e_0 \right],$$

$$\frac{du_5}{d\tau} = u_3 \left(d_2 u_1 + s_2 \right) - u_5 \left[\left(\beta_1 L_1 + \gamma_1 d_1 \right) u_2 + \beta_1 a_1 L_1 u_6 + e_0 \right],$$

$$rac{du_6}{d au}=eta_1 L_1 \left(a_1 u_6+u_2
ight) u_5-u_6 \left(p_1 s_1+e_1
ight),$$

$$\frac{du_{7}}{d\tau} = \beta_{2}L_{2}\left(a_{2}u_{7} + u_{3}\right)u_{4} - u_{7}\left(p_{2}s_{2} + e_{2}\right),$$

 $\frac{du_8}{d\tau} = \gamma_1 d_1 u_2 u_5 + \gamma_2 d_2 u_3 u_4 + p_1 s_1 u_6 + p_2 s_2 u_7 - e_0 u_8,$

Steady states

Trivial steady state E₀=(0,0,0,0,0,0,0,0,0)

Disease-free steady state E_{DF}=(1,0,0,0,0,0,0,0,0)

Two one-virus steady states

$$E_1 = (\widetilde{u}_1^*, u_2^*, 0, u_4^*, 0, 0, 0)$$

$$E_2 = (u_1^*, 0, u_3^*, 0, u_5^*, 0, 0)$$

Endemic steady state

$$S = (u_1^*, u_2^*, u_3^*, u_4^*, u_5^*, u_6^*, u_7^*, u_8^*)$$

Steady states

Introduce basic reproduction numbers

$$\mathcal{R}_{01} = \frac{L_1}{e_1 + s_1}, \quad \mathcal{R}_{02} = \frac{L_2}{e_2 + s_2}, \quad \mathcal{R}_0 = \max\{\mathcal{R}_{01}, \mathcal{R}_{02}\}$$

E₁ is feasible for R₀₁>1
E₂ is feasible for R₀₂>1

Tisease-free state is stable for $R_0 < 1$

Theorem. The one-virus steady state $E_2 = (u_1^*, 0, u_3^*, 0, u_5^*, 0, 0)$ with $u_1^* = (e_2 + s_2)/L_2$, u_3^* and u_5^* given by

$$u_1^* = \frac{e_2 + s_2}{L_2}, \quad u_3^* = \frac{-c_1(u_1^*) - \sqrt{c_1^2(u_1^*) - 4c_2(u_1^*)c_0(u_1^*)}}{2c_2(u_1^*)}, \quad u_5^* = A(u_1^*)u_3^*,$$

with

$$A(u_1^*) = rac{d_2 u_1^* + s_2}{e_0}, \quad B = L_2 + d_2, \quad c_0(u_1^*) = u_1^*(1 - u_1^*),$$

$$c_1(u_1^*) = A(u_1^*) - u_1^*[2A(u_1^*) + B + 1], \quad c_2(u_1^*) = -A(u_1^*)[A(u_1^*) + 1]$$

Let x_{30} , x_{31} , x_{32} and u_B be defined by

A

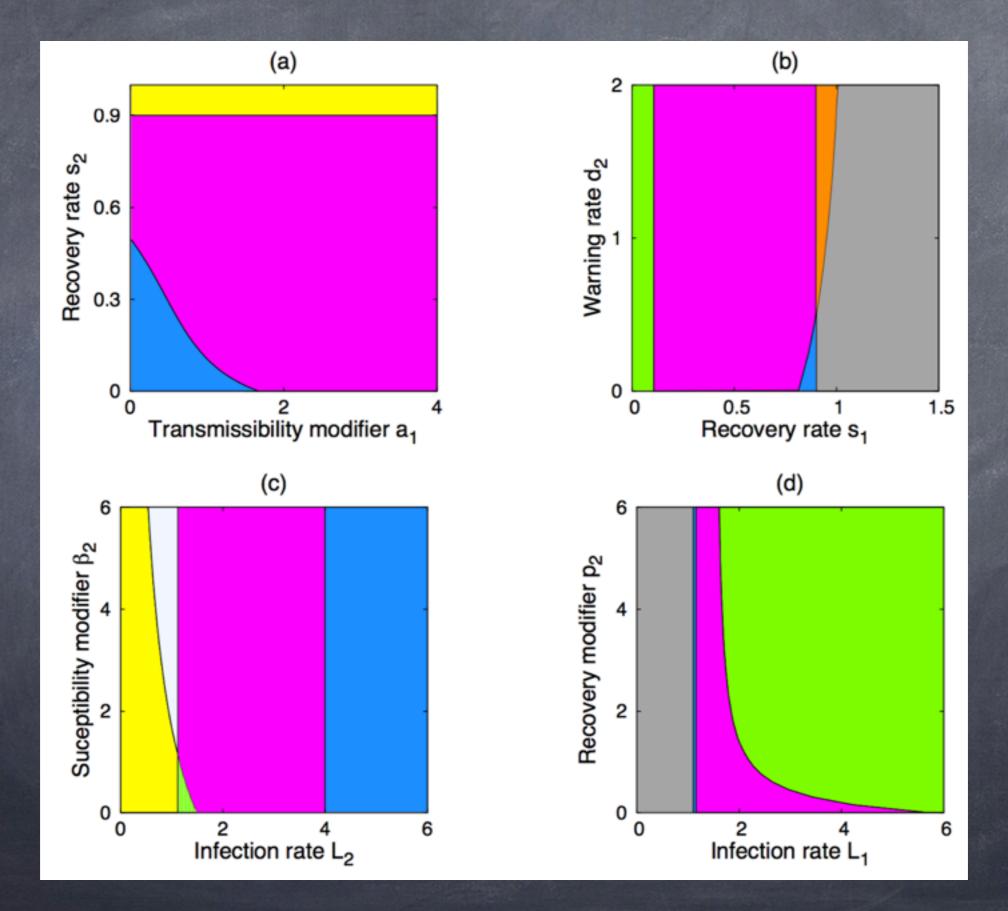
$$\begin{split} x_{21} &= s_1(p_1+1) + 2e_1 - L_1(a_1\beta_1u_5^* + u_1^*), \\ x_{20} &= (p_1s_1 + e_1)(e_1 + s_1 - L_1u_1^*) - L_1a_1\beta_1(e_1 + s_1)u_5^*, \\ x_{32} &= 2u_1^* + (L_2 + d_2 + 1)u_3^* + 2u_5^* + e_0 - 1, \\ x_{31} &= d_1(u_3^*)^2 + [(L_2 + d_2)[u_1^*(L_2 + 1) + u_5 + e_0] + d_2(u_1^* + u_5^* - 1) + e_0]u_3^* \\ &+ e_0(2u_1^* + 2u_5^* - 1), \\ x_{30} &= L_2u_3^* [d_2u_1^* (2(u_1^* + u_5^*) + u_3^* + e_0 - 1) + u_1^*e_0 (L_2 + 1) + s_2 (2u_1^* + u_3^* - 1) \\ &+ L_2u_3^* + u_5^* (e_0 + 2s_2). \end{split}$$

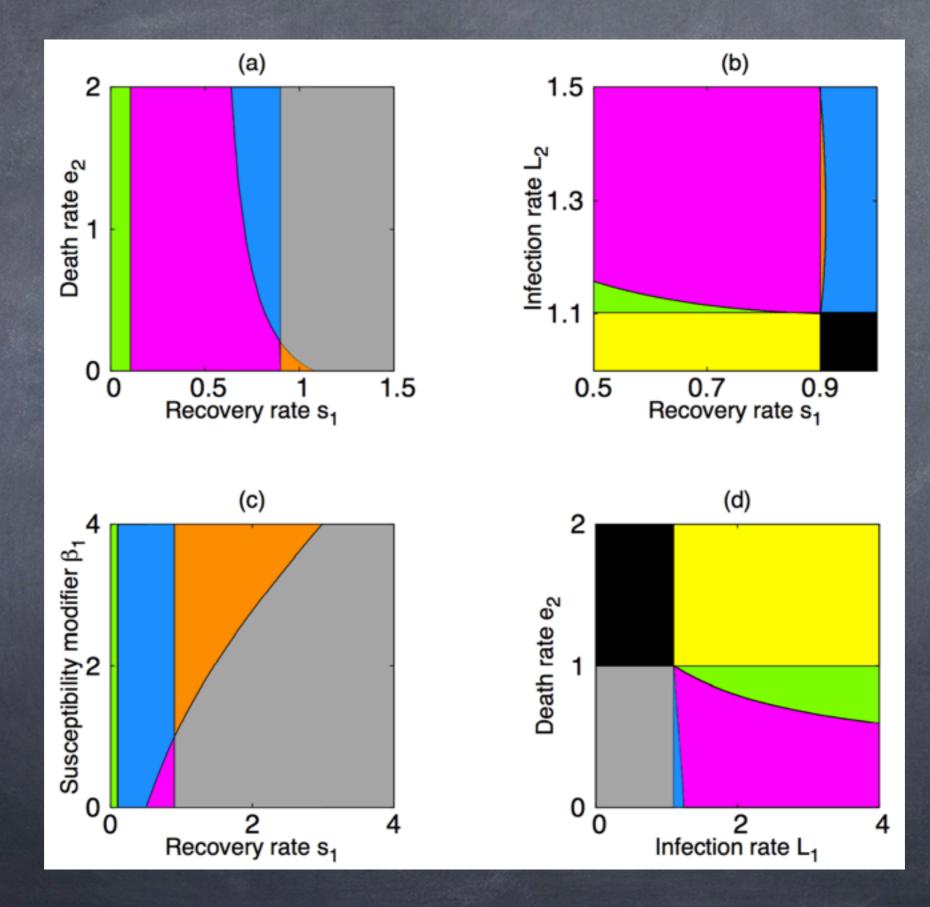
and

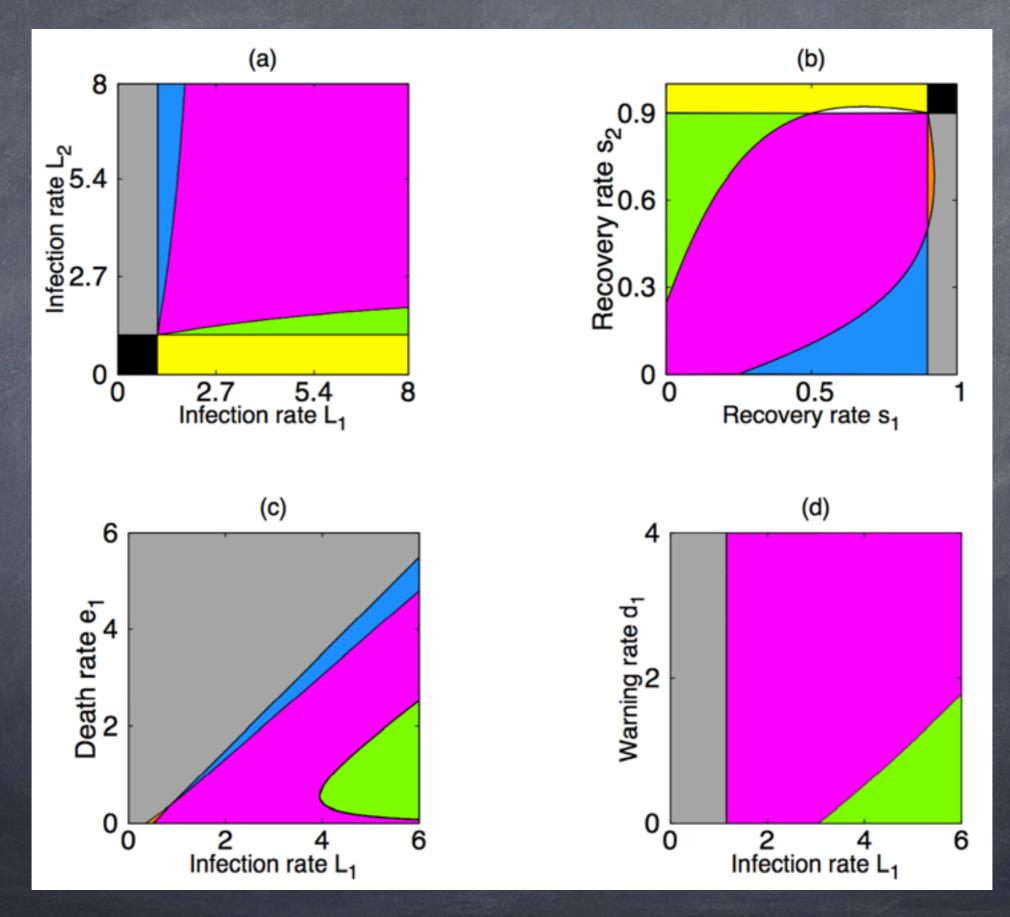
$$u_B = rac{s_1 p_1 + e_1}{L_1 a_1 \beta_1} rac{s_1 + e_1 - L_1 u_1^*}{e_1 + s_1} \, .$$

Then the steady state E_2 is linearly asymptotically stable if and only if the following conditions hold:

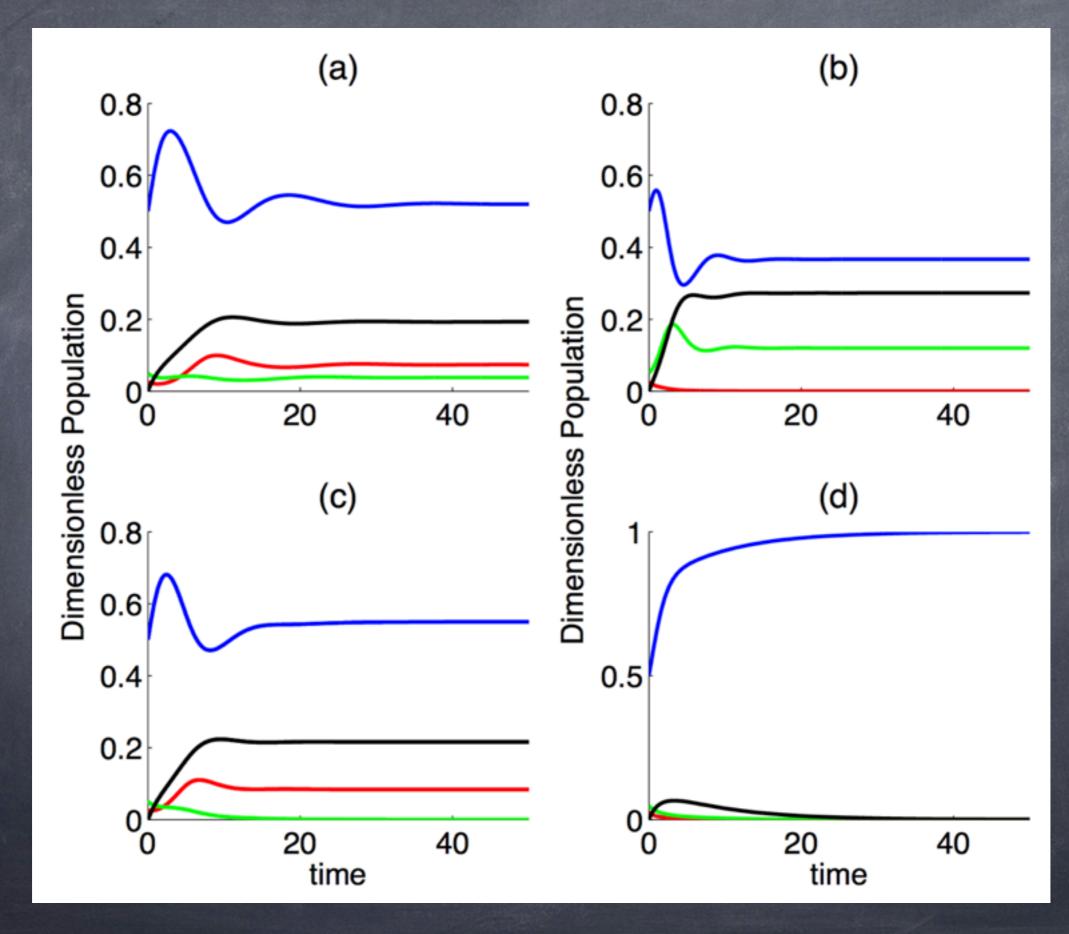
(i) $0 < u_5^* < u_B$, (ii) $x_{30} > 0$, $x_{31} > 0$, $x_{32} > 0$,



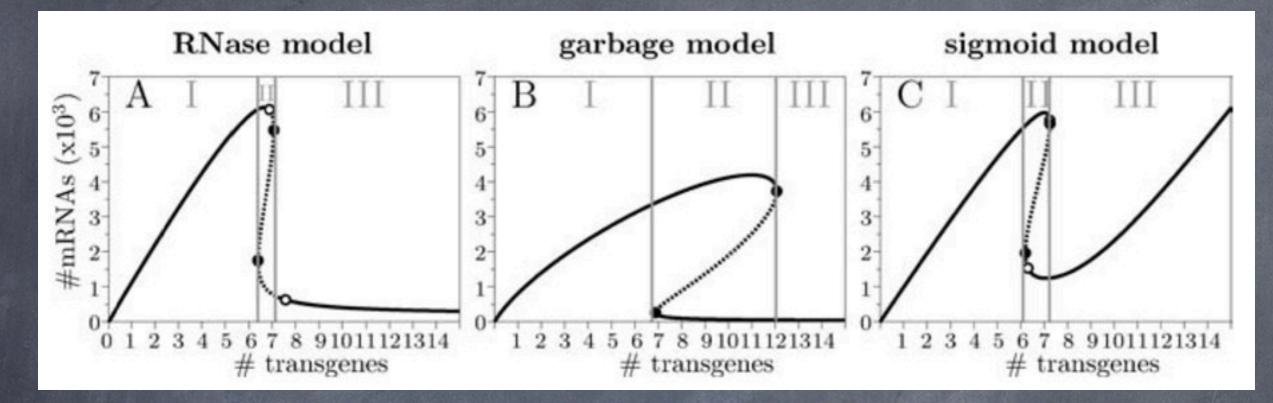




Numerical simulations



Mechanism of RNA silencing



$$\frac{dM}{dt} = i - d_m M - pM - bSM - g_2 SM,$$

$$\frac{dD}{dt} = pM - aD + g_2 SM,$$

$$\frac{dG}{dt} = anD - \frac{\mathbf{d}_r \mathbf{S}}{1 + \mathbf{kS}} - d_s S - bSM - g_2 SM,$$

$$\frac{dG}{dt} = bSM - d_g G.$$

$$\frac{dM}{dt} = i - d_m M - pM - bSM - g_2 SM,$$

$$\frac{dM}{dt} = i - d_m M - pM - bSM - g_2 SM,$$

$$\frac{dM}{dt} = i - d_m M - pM - bSM,$$

$$\frac{dD}{dt} = pM - aD + g_2 SM + \mathbf{g}_3 \mathbf{SG},$$

$$\frac{dD}{dt} = pM - aD + g_2 SM + \mathbf{g}_3 \mathbf{SG},$$

$$\frac{dG}{dt} = anD - d_s S - bSM - g_2 SM - \mathbf{g}_3 \mathbf{SG},$$

$$\frac{dG}{dt} = bSM - d_g G - \mathbf{g}_3 \mathbf{SG}.$$

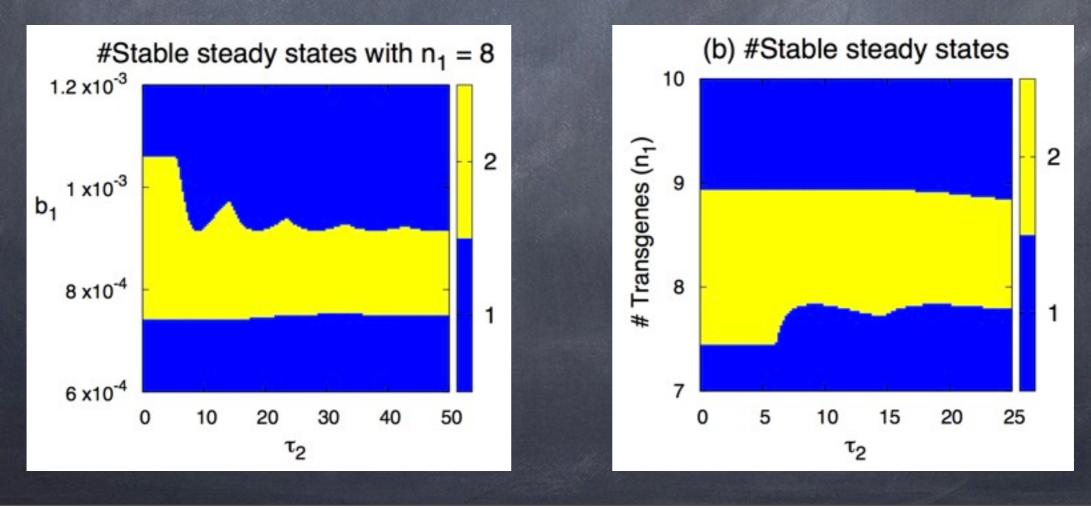
$$\frac{dG}{dt} = bSM - d_g G - \mathbf{g}_3 \mathbf{SG}.$$

$$\frac{dG}{dt} = bSM - d_g G - \mathbf{g}_3 \mathbf{SG}.$$

M.A.C. Groenenboom et al., PLoS Comp. Biol. 1, e21 (2005)

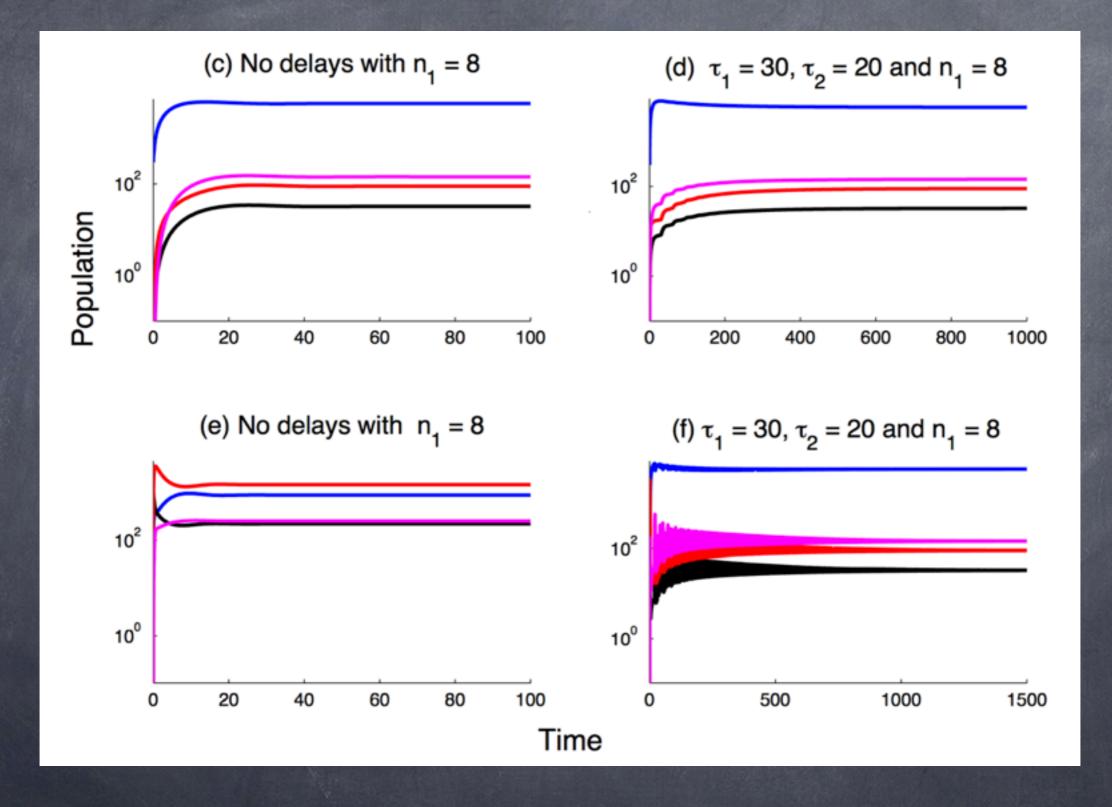
Mechanism of RNA silencing

$$\begin{aligned} \frac{dM}{dt} &= n_1 h - d_m M(t) - p M(t) - b_1 S(t) M(t) - b_2 S(t) M(t) \\ \frac{dD}{dt} &= p M(t) - a D(t) + b_2 S(t - \tau_1) M(t - \tau_1) + b_3 S(t - \tau_2) G(t - \tau_2) \\ \frac{dS}{dt} &= n_2 a D(t) - d_s S(t) - b_1 S(t) M(t) - b_2 S(t) M(t) - b_3 S(t) G(t) \\ \frac{dG}{dt} &= n_3 b_1 S(t) M(t) - d_g G(t) - b_3 S(t) G(t) \end{aligned}$$



Thursday, 4 February 16

Mechanism of RNA silencing



Discussion

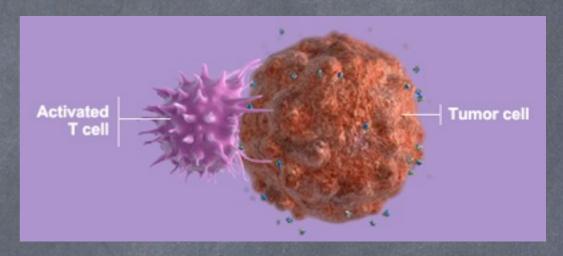
Models provide significant insights and intuition into the dynamics of RNAi

Very important role is played by time delays

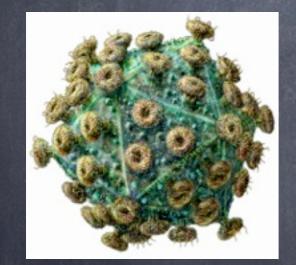
Spatial propagation of the silencing signal
Explicit dynamics of virus particles
Details of virus life cycle
Co-evolutionary dynamics

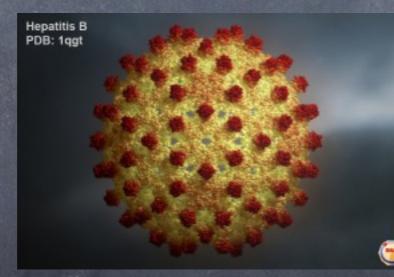
Applications: medical treatments

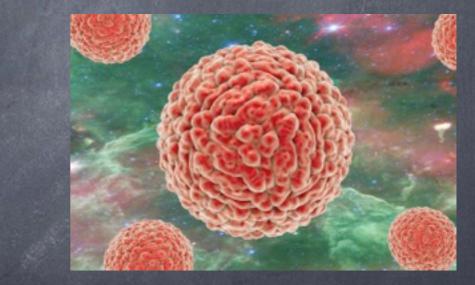
Immunotherapy of cancer



Infectious diseases: HIV, HBV Zika?







Macular degeneration

Applications: biotechnology Cell biology knock-out of specific genes Food industry decreased carcinogens in tobacco plants insecticides transgenic plants

Arctic Apple

gene silencing reduces expression of polyphenol oxidase

Thank you!