Quescence eggs and vertical transmission – Are they important in dengue transmission?

Hyun Mo Yang

UNICAMP, Campinas, Brasil

DSABNS 2016 workshop Universidade de Évora, Portugal

Évora, February 2-5, 2016

summary

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Summary

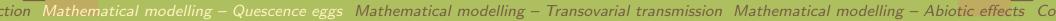
- Introduction
- Quescence eggs
- Transovarial transmission
- Dengue and abiotic influences
- Conclusion
- References

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Introduction

Dengue

- Dengue virus, a *flavivirus* transmitted by arthropod of the genus *Aedes*, is prevalent in different parts of the world.
- The efforts of the eradication of dengue epidemics can be measured using mathematical models.
- Modelling quiescence eggs.
- Modelling transovarial transmission.
- Modelling influences of abiotic influences.



Mathematical modelling – Quescence eggs

- Eggs of the mosquito A. aegypti Embryonic development of the eggs is
 completed approximately within 3 days after oviposition, and a fully
 developed 1st instar larva resides within the chorion of the egg in a
 dormant state referred to as quiescence.
- Life history traitpharate larvae Withstand months of quiescence inside the egg where they depend on stored maternal reserves.
- Duration of quiescence and extent of nutritional depletion Affect the physiology and survival of larvae that hatch in a suboptimal habitat.
- Quiescence Desiccation resistant.

Laboratory

- Laboratorial experiments Assessing the influence of the quiescence eggs on the life cycle of *A. aegypti*.
- Experiments Classifying the quiescence eggs in roughly four categories according to their ability to hatch larvae.
- Quiescence eggs Improvement of the fitness of mosquito population, or not …

Life cycle

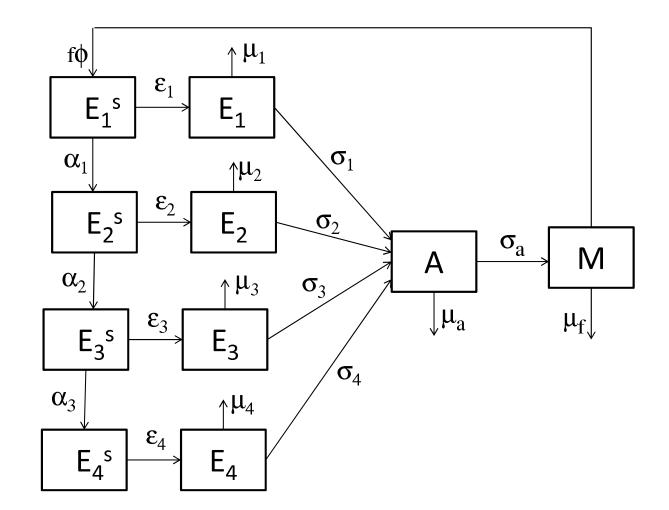
ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

- Quiescence egg E_i^s , for $i = 1, \dots, 4$.
- Hatchable egg E_i , for $i = 1, \dots, 4$.
- Larva + Pupa A.
- Female mosquito *F*.

The passage from E_i^s to E_i is dictated by external stimuli (such as temperature, humidity, nutrients, etc.) and is irreversible.

Flow chart

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co



The flow chart of mosquito's life cycle including quiescence eggs.

Parameters

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Oviposition rate $-\phi$. Female fraction -f. Transition rate $-\alpha_i$, for $i = 1, \dots, 4$. Hatching rate $-\varepsilon_i$, for $i = 1, \dots, 4$. Mortality rate (eggs) $-\mu_i$, for $i = 1, \dots, 4$. Transition rate (aquatic) $-\sigma_a$. Mortality rate (aquatic) $-\mu_a$. Mortality rate (female mosquito) $-\mu_f$.

• Carrying Capacity -k.

Dynamical system

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Equations:

$$\begin{cases} \frac{d}{dt}E_{1}^{s} &= f\phi M - (\alpha_{1} + \varepsilon_{1}) E_{1}^{s} \\ \frac{d}{dt}E_{1} &= \varepsilon_{1}E_{1}^{s} - (\mu_{1} + \sigma_{1}) E_{1} \\ \frac{d}{dt}E_{2}^{s} &= \alpha_{1}E_{1}^{s} - (\alpha_{2} + \varepsilon_{2}) E_{2}^{s} \\ \frac{d}{dt}E_{2} &= \varepsilon_{2}E_{2}^{s} - (\mu_{2} + \sigma_{2}) E_{2} \\ \frac{d}{dt}E_{3}^{s} &= \alpha_{2}E_{2}^{s} - (\alpha_{3} + \varepsilon_{3}) E_{3}^{s} \\ \frac{d}{dt}E_{3} &= \varepsilon_{3}E_{3}^{s} - (\mu_{3} + \sigma_{3}) E_{3} \\ \frac{d}{dt}E_{4}^{s} &= \alpha_{3}E_{3}^{s} - \varepsilon_{4}E_{4}^{s} \\ \frac{d}{dt}E_{4}^{s} &= \varepsilon_{4}E_{4}^{s} - (\mu_{4} + \sigma_{4}) E_{4} \\ \frac{d}{dt}A_{4} &= (\sigma_{1}E_{1} + \sigma_{2}E_{2} + \sigma_{3}E_{3} + \sigma_{4}E_{4}) (1 - \frac{A}{k}) \\ - (\mu_{a} + \sigma_{a}) A \\ \frac{d}{dt}M_{4}^{s} &= \sigma_{a}A - \mu_{f}M \end{cases}$$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Auxiliary parameters, for $i = 1, \dots, 4$:

Probabilities of transition from quiescence stage i to stage i + 1 (a_i) and to hatchable stage i (b_i) :

$$\begin{cases}
a_i = \frac{\alpha_i}{\alpha_i + \varepsilon_i} \\
b_i = \frac{\varepsilon_i}{\alpha_i + \varepsilon_i}
\end{cases}$$

The average periods of time that eggs stay at quiescence (d_i) and hatchable (g_i) stages i:

$$\begin{cases} d_i = \frac{1}{\alpha_i + \varepsilon_i} \\ g_i = \frac{1}{\mu_i + \sigma_i} \end{cases}$$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Auxiliary parameters, for $i = 1, \dots, 4$:

Probability of eggs surviving the hatchable stage i and hatch as larvae (c_i) , and the probability of aquatic forms (larvae and pupae) surviving the aquatic phase and emerging as adult mosquitoes (c_a) :

$$\begin{cases}
c_i = \frac{\sigma_i}{\mu_i + \sigma_i} \equiv \sigma_i g_i \\
c_a = \frac{\sigma_a}{\mu_a + \sigma_a}
\end{cases}$$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Trivial equilibrium P^0 :

$$P^{0} = \left(\begin{bmatrix} (\bar{E}_{i}^{s} = 0, \bar{E}_{i} = 0), i = 1, \cdots, 4 \end{bmatrix}, \\ \bar{A} = 0, \bar{M} = 0 \right),$$

Basic offspring number Q_0 :

$$Q_0 = q_0 c_a \frac{f\phi}{\mu_f}$$

Average number of eggs that survive four compartments and hatch as larvae q_0 :

$$q_0 = b_1 c_1 + b_2 a_1 c_2 + b_3 a_2 a_1 c_3 + a_3 a_2 a_1 c_4$$

Trivial equilibrium is LAS if $Q_0 < 1$.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Non-trivial equilibrium P^* :

$$P^* = \left(\left[\bar{E}_i^s = E_i^{s*}, \bar{E}_i = E_i^*, i = 1, \cdots, 4 \right], \bar{A} = A^*, \bar{M} = M^* \right)$$

Auxiliary parameters:

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Non-trivial equilibrium P^* :

$$P^* = \left(\left[\bar{E}_i^s = E_i^{s*}, \bar{E}_i = E_i^*, i = 1, \cdots, 4 \right], \bar{A} = A^*, \bar{M} = M^* \right)$$

Number of adult mosquitoes M^* :

$$M^* = \frac{\sigma_a}{\mu_f} k \left(1 - \frac{1}{Q_0} \right)$$

• Q_0 is the basic offspring number Non-trivial equilibrium is LAS if $Q_0 > 1$.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Experiment	Quiescence	Number	Eclosion	Eclosion
number	(days)	of eggs	$(eggs \times days^{-1})$	(%)
1	3	807	86.1	85.4
2	32	698	5.3	41.1
3	63	586	6.4	36.0
4	91	738	12.1	47.7
5	121	749	13.2	97.2
6	154	800	1.6	1.3
7	273	612	8.6	4.3
8	337	611	1.0	0.3
9	427	842	5.6	10.9
10	462	800	1.0	0.5
11	492	1708	1.0	0.2

From H.H.G. Silva, I.G. Silva, "Influence of eggs quiescence period on the *Aedes aegypti* (Linnaeus, 1762) (Diptera, Culicidae) life cycle at laboratory conditions", *Rev. Soc. Bras. Med. Trop.*, 32(4), 1999, pp. 349-355.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Experiment	Per-capita eclosion	Per-capita mortality
number	rate $(days^{-1})$	rate $(days^{-1})$
1	0.1067	0.0182
2	0.007593	0.0109
3	0.01092	0.0194
4	0.01640	0.0180
5	0.01762	0.00051
6	0.002	0.1518
7	0.01405	0.3127
8	0.00164	0.5439
9	0.00665	0.05437
10	0.00125	0.2488
11	0.000585	0.2922

Calculation of the per-capita eclosion and mortality rates.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Stage – <i>i</i>	$\sigma_i (days^{-1})$	$\mu_i (days^{-1})$	p_i	$\alpha_i (days^{-1})$	$\varepsilon_i (days^{-1})$
1	0.10669	0.01824	5.85	0.2	0.1249
2	0.01164	0.01609	0.72	0.0091	0.02773
3	0.01762	0.0005077	34.7	0.0333	0.01813
4	0.00436	0.26730	0.016	0	0.27166

Estimation of the parameters σ_i , μ_i , calculation of the productivity indexes $p_i = \sigma_i/\mu_i$, α_i and ε_i , for $i = 1, \dots, 4$.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Temperature	$\sigma_a (days^{-1})$	$\mu_a (days^{-1})$	$\mu_f (days^{-1})$	$\phi (eggs \times days^{-1})$
$16^{\circ}C$	0.02615	0.01397	0.03642	0.69714
$28^{o}C$	0.11612	0.06001	0.02877	8.29500

The estimated values of the parameters σ_a , μ_a , μ_f and ϕ for 16 and 28 degree Celsius (^{o}C).

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Seasons	Stage 1	Stage 2	Stage 3	Stage 4	Q_0
Summer (high)	78.04	1.531	6.4×10^{-3}	7.1×10^{-7}	79.57
Summer (low)	0.404	3.933	2.412	1.328	8.076
Winter (high)	5.122	0.101	4.2×10^{-4}	4.6×10^{-8}	5.223
Winter (low)	0.027	0.258	0.153	0.087	0.530

The basic offspring number Q_0 calculated using the values given in Tables 3 and 4, varying only the transition rates ε_i for two seasons: Summer ($28^{\circ}C$) and winter ($16^{\circ}C$). Two values are used for $i = 1, \dots, 4$ ($days^{-1}$): $\varepsilon_i = 5.0$ (high) and $\varepsilon_i = 0.001$ (low). The basic offspring number corresponding to a unique eggs compartment is $Q_0^1 = 5.327$ for winter season.

Quiescence eggs in mosquito population

- The capacity of the *A. aegypti* eggs being stored during hostile abiotic factors and, then, hatch to larvae in favorable season with increased fitness Essential to sustain *A. aegypti* population to face seasonality.
- Quiescence eggs having approximately 120 days When allowed to hatch, these eggs presented the most producible capacity to originate larvae.
- Period of 4 months Approximately the worst abiotic conditions to A. aegypti to survive.
- Quiescence of eggs of 4 months joined to the higher capacity of hatching

 An important strategy to A. aegypti population to persist in seasonally
 varying environment.

Mathematical modelling – Transovarial transmission

Variables

- Human population is divided into four compartments: s, i and r, which are the fractions at time t of, respectively, susceptible, infectious and recovered persons, with s + i + r = 1. The constant total number of the human population is N.
- l is the number of larvae (female) at time t, and the number of pupae in time t is p.
- The female mosquito population is divided into three compartments: m_1 and m_2 , which are the numbers at time t of, respectively, susceptible and infectious mosquitoes. The size of mosquito population is $m = m_1 + m_2$.

Parameters

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

The human mortality rate is μ_h .

- The effective larvae production rate is given by qf (1 l/C) φm, where q and f are the fractions of eggs that are hatching to larva and that will originate female mosquitoes, respectively, and C is the total (carrying) capacity of the breeding sites. Larva death is μl. Uninfected and infected larvae are denoted by l1 and l2. Larvae are transformed in adult mosquitoes at rate σa. The female mosquitoes mortality rate is μf.
 Among humans the transmission coefficient (or rate) is βh, depending on φ. The infected persons are removed to recovered (immune) class by σh, the recovery rate. With respect to the vector, the susceptible mosquitoes are infected at a rate βm.
 - The transmission coefficients β_h and β_m are divided by N.

Model

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Modelling transovarian transmission

where j is the fraction of eggs with dengue virus from all eggs laid by infected mosquitoes.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Trivial equilibrium P^0 , or disease free equilibrium (DFE),

$$P^{0} = \left(\bar{m}_{2} = 0, \bar{\imath} = 0, \bar{l}_{2} = 0, \bar{l}_{1} = l^{*}, \bar{m}_{1} = m^{*}, \bar{s} = 1\right),$$

where l^* , p^* and m^* are given by

$$\begin{cases} l^* = C\left(1 - \frac{1}{Q_0}\right) \\ m^* = \frac{\sigma_a}{\mu_f} C\left(1 - \frac{1}{Q_0}\right). \end{cases}$$

Clearly the mosquito population exists if $Q_0 > 1$, where

$$Q_0 = \frac{\sigma_a}{\sigma_a + \mu_a} \frac{qf\phi}{\mu_f}$$

is the basic offspring number.

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Non-trivial equilibrium P^* , or endemic equilibrium,

$$P^* = \left(\bar{m}_2 = m_2^*, \bar{\imath} = i^*, \bar{l}_2 = l_2^*, \bar{l}_1 = l_1^*, \bar{m}_1 = m_1^*, \bar{s} = s^*\right),$$

where

$$\begin{cases} l_1^* &= (1-j) \frac{\beta_m \phi i^* + \mu_f}{\beta_m \phi i^* + (1-j)\mu_f} C\left(1 - \frac{1}{Q_0}\right) \\ l_2^* &= j \frac{\beta_m \phi i^*}{\beta_m \phi i^* + (1-j)\mu_f} C\left(1 - \frac{1}{Q_0}\right) \\ m_1^* &= (1-j) \frac{\mu_f}{\beta_m \phi i^* + (1-j)\mu_f} \frac{\sigma_a}{\mu_f} C\left(1 - \frac{1}{Q_0}\right) \\ m_2^* &= \frac{\beta_m \phi i^*}{\beta_m \phi i^* + (1-j)\mu_f} \frac{\sigma_a}{\mu_f} C\left(1 - \frac{1}{Q_0}\right) \\ s^* &= 1 - \frac{\sigma_h + \mu_h}{\mu_h} i^* \\ i^* &= \begin{cases} \frac{\mu_f (R_e - 1)}{\beta_m \phi + \frac{\mu_f (\sigma_h + \mu_h)}{\mu_h} R_0}, & for \quad j < 1 \\ \frac{\mu_f R_0}{\beta_m \phi + \frac{\sigma_h + \mu_h}{\mu_h} R_0}, & for \quad j = 1 \end{cases} \end{cases}$$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

The gross reproduction number R_e , which encompasses transovarian transmission, is

$$R_e = R_0 + j,$$

where the basic reproduction number for horizontal transmission is

$$R_0 = \frac{\beta_h \phi}{\mu_f} \frac{\beta_m \phi}{\sigma_h + \mu_h} \frac{m^*}{N}.$$

 R_0 can be split in two partial contributions R_0^h and R_0^m defined by

$$\begin{cases} R_0^h = \frac{\beta_h \phi}{\mu_f} \\ R_0^m = \frac{\beta_m \phi}{\sigma_h + \mu_h} \frac{m^*}{N} \end{cases}$$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

The combination of s^* , m_1^* and m^* results in

$$s^* \frac{m_1^*}{m^*} = \chi_e = \frac{1-j}{R_0}$$

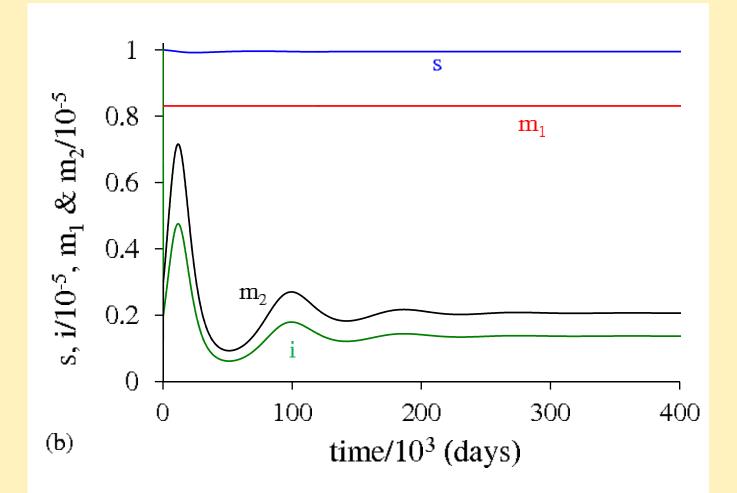
and the threshold of product of fractions χ_e^{-1} , which encompasses transovarian transmission, can be written as

$$\frac{1}{\chi_e} = \frac{R_0}{1-j},$$

thus $\chi_e^{-1} = R_0^h [R_0^m / (1-j)].$

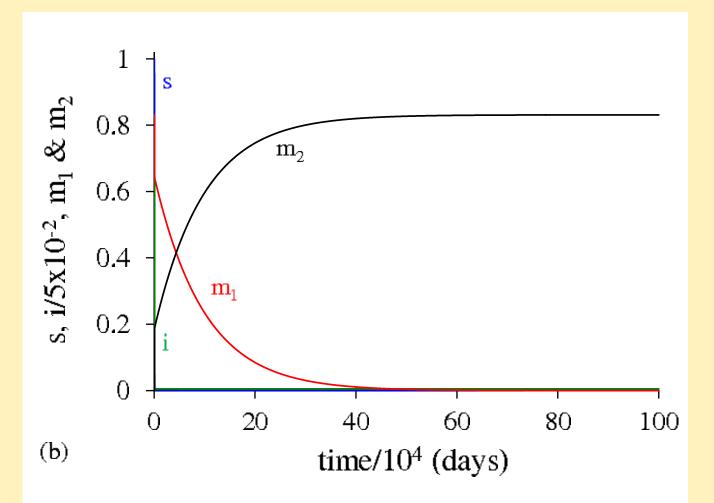
Case j = 0.02 and $R_0 = 0.98495$

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co



The case $R_e = R_0 + j = 1.00495 > 1$: non-trivial equilibrium.

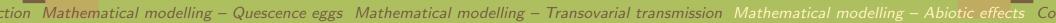
Case j = 1 and $R_0 = 0.0099$



The case $R_e = R_0 + j = 1.0099 > 1$: non-trivial equilibrium. Displacement of susceptible mosquitoes.

Transovarial transmission in dengue

- Gross reproduction number $R_e = R_0 + j$.
- Basic reproduction number R_0 Short term dynamics.
 - Transovarial contribution j Long term dynamics.
- Important role when R_0 near one.



Mathematical modelling – Abiotic effects

Variables

- Human population is divided into four compartments: s, e, i and r, which are the fractions at time t of, respectively, susceptible, exposed, infectious and recovered persons, with s + e + i + r = 1. The total number of the human population is N, which varies with time.
- l is the number of larvae (female) at time t, and the number of pupae in time t is p.
- The female mosquito population is divided into three compartments: m_1 , m_2 and m_3 , which are the numbers at time t of, respectively, susceptible, exposed and infectious mosquitoes. The size of mosquito population is $m = m_1 + m_2 + m_3$.

Parameters

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

The human natality rate is ϕ_h .

- The effective larvae production rate is given by $qf(1-l/C)\phi m$, where q and f are the fractions of eggs that are hatching to larva and that will originate female mosquitoes, respectively, and C is the total (carrying) capacity of the breeding sites. Change rate of larvae to pupae and larva death are σ_l and μ_l . The transformation rate of pupae to adult mosquitoes and death are σ_p and μ_p . The female mosquitoes mortality rate is μ_f . Among humans the transmission coefficient (or rate) is β_h , depending on ϕ . The exposed persons are transferred to infectious class by rate γ_h , and are removed to recovered (immune) class by σ_h , the recovery rate. With respect to the vector, the susceptible mosquitoes are infected at a rate β_m . These exposed mosquitoes are transferred to infectious class at a rate γ_m . The transmission coefficients β_h and β_m are divided by N.
- All mosquito related parameters depend om time (temperature and precipitation).

Abiotic: temperature and precipitation

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Dengue transmission modelling

$$\frac{d}{dt}l = qf\phi m \left(1 - \frac{l}{C}\right) - (\sigma_l + \mu_l) \tilde{d}$$

$$\frac{d}{dt}p = \sigma_l l - (\sigma_p + \mu_p) p$$

$$\frac{d}{dt}m_1 = \sigma_p p - (\beta_m \phi i + \mu_f) m_1$$

$$\frac{d}{dt}m_2 = \beta_m \phi i m_1 - (\gamma_m + \mu_f) m_2$$

$$\frac{d}{dt}m_3 = \gamma_m m_2 - \mu_f m_3$$

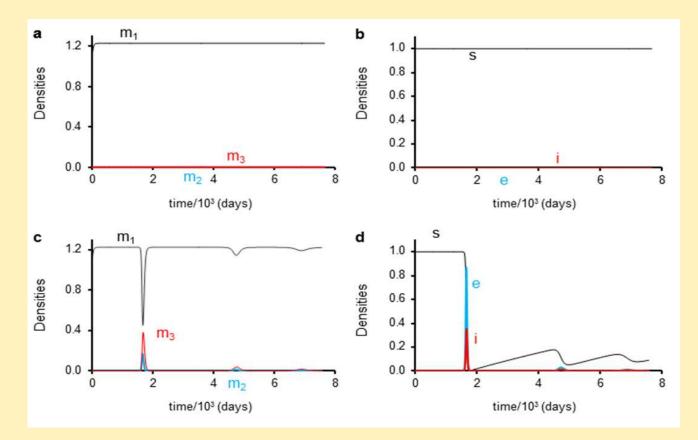
$$\frac{d}{dt}s = \phi_h - \left(\frac{\beta_h \phi}{N} m_3 + \phi_h\right) s$$

$$\frac{d}{dt}e = \frac{\beta_h \phi}{N} m_3 s - (\gamma_h + \phi_h) e$$

$$\frac{d}{dt}i = \gamma_h e - (\sigma_h + \phi_h) i.$$

Constant parameters

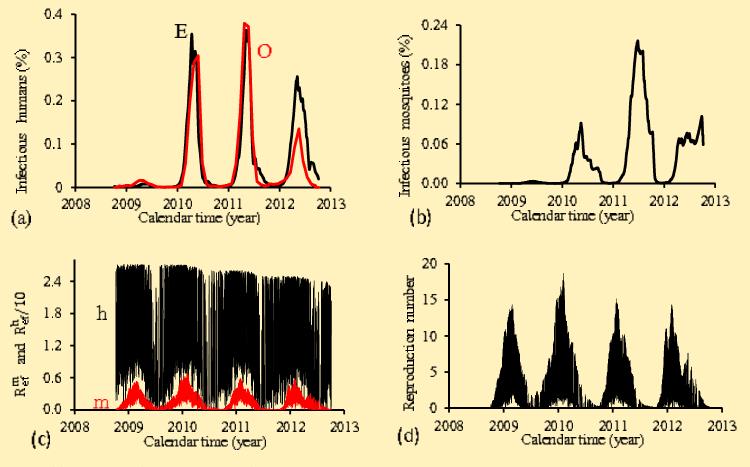
ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co



No abiotic effects.

Varying parameters

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co



Effects of abiotic factors: temperature and precipitation.

Abiotic conditions in dengue epidemics

- No abiotic factors epidemics period of 2 years.
- Abiotic factors annual epidemics.
- High incidence in summer and very low incidence in winter.

Conclusion

Conclusion

- Eggs surviving winter season.
- More fitted than fresh eggs.
- Transovarial transmission infected eggs.
- Infected eggs can dengue virus survive?
- Temperature and precipitation lead to annual cycle.
- Quescence egggs, infected eggs and abiotic variation joint effects are …

ction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Co

Thank You

Bibiography

- Yang, H.M., 2014. Assessing the influence of quiescence eggs on the dynamics of mosquito *Aedes aegypti*. Appl. Math. 5 (7), p. 2696-2911.
- Yang, H.M., 2016. Epidemiological implications of the transovarial transmission in the dynamics of dengue infection. J Biological Systems: submitted.
- Yang, H.M., Boldrini, J.L., Fassoni, A.C., Lima, K.K.B., Freitas, L.F.S., Gomez, M.C., Andrade, V.R., Freitas, A.R.R., 2016. Fitting the Incidence Data from the City of Campinas, Brazil, Based on Dengue Transmission Modellings Considering Time-dependent Entomological Parameters. PlosOne: submitted.