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■ Dengue virus, a flavivirus transmitted by arthropod of the genus Aedes, is
prevalent in different parts of the world.

■ The efforts of the eradication of dengue epidemics can be measured using
mathematical models.

■ Modelling quiescence eggs.
■ Modelling transovarial transmission.
■ Modelling influences of abiotic influences.
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■ Eggs of the mosquito A. aegypti – Embryonic development of the eggs is
completed approximately within 3 days after oviposition, and a fully
developed 1st instar larva resides within the chorion of the egg in a
dormant state referred to as quiescence.

■ Life history traitpharate larvae – Withstand months of quiescence inside
the egg where they depend on stored maternal reserves.

■ Duration of quiescence and extent of nutritional depletion – Affect the
physiology and survival of larvae that hatch in a suboptimal habitat.

■ Quiescence – Desiccation resistant.
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■ Laboratorial experiments – Assessing the influence of the quiescence eggs
on the life cycle of A. aegypti.

■ Experiments – Classifying the quiescence eggs in roughly four categories
according to their ability to hatch larvae.

■ Quiescence eggs – Improvement of the fitness of mosquito population, or
not ...
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■ Quiescence egg – Es
i , for i = 1, · · · , 4.

■ Hatchable egg – Ei, for i = 1, · · · , 4.
■ Larva + Pupa – A.
■ Female mosquito – F .

The passage from Es
i to Ei is dictated by external stimuli (such as

temperature, humidity, nutrients, etc.) and is irreversible.



Flow chart
duction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Conclusion

9 / 43
The flow chart of mosquito’s life cycle including quiescence eggs.
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■ Oviposition rate – φ.
■ Female fraction – f .
■ Transition rate – αi, for i = 1, · · · , 4.
■ Hatching rate – εi, for i = 1, · · · , 4.
■ Mortality rate (eggs) – µi, for i = 1, · · · , 4.
■ Transition rate (aquatic) – σa.
■ Mortality rate (aquatic) – µa.
■ Mortality rate (female mosquito) – µf .
■ Carrying Capacity – k.
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Equations:
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Auxiliary parameters, for i = 1, · · · , 4:

■ probabilities of transition from quiescence stage i to stage i+ 1 (ai) and
to hatchable stage i (bi):

{

ai =
αi

αi+εi

bi =
εi

αi+εi

■ The average periods of time that eggs stay at quiescence (di) and
hatchable (gi) stages i:

{

di =
1

αi+εi

gi =
1

µi+σi

■ ...
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Auxiliary parameters, for i = 1, · · · , 4:

■ ...
■ Probability of eggs surviving the hatchable stage i and hatch as larvae

(ci), and the probability of aquatic forms (larvae and pupae) surviving the
aquatic phase and emerging as adult mosquitoes (ca):

{

ci =
σi

µi+σi
≡ σigi

ca = σa

µa+σa
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Trivial equilibrium P 0:

P 0 =
([(

Ēs
i = 0, Ēi = 0

)

, i = 1, · · · , 4
]

,
Ā = 0, M̄ = 0

)

,

■ Basic offspring number Q0:

Q0 = q0ca
fφ

µf

■ Average number of eggs that survive four compartments and hatch as
larvae q0:

q0 = b1c1 + b2a1c2 + b3a2a1c3 + a3a2a1c4

Trivial equilibrium is LAS if Q0 < 1.
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Non-trivial equilibrium P ∗:

P ∗ =
([

Ēs
i = Es∗

i , Ēi = E∗

i , i = 1, · · · , 4
]

, Ā = A∗, M̄ = M∗
)

■ Auxiliary parameters:
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■ ...
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Non-trivial equilibrium P ∗:

P ∗ =
([

Ēs
i = Es∗

i , Ēi = E∗

i , i = 1, · · · , 4
]

, Ā = A∗, M̄ = M∗
)

■ ...
■ Number of adult mosquitoes M∗:

M∗ =
σa
µf

k

(

1−
1

Q0

)

■ Q0 is the basic offspring number

Non-trivial equilibrium is LAS if Q0 > 1.



Table 1
duction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Conclusion

17 / 43

Experiment Quiescence Number Eclosion Eclosion
number (days) of eggs (eggs× days−1) (%)

1 3 807 86.1 85.4
2 32 698 5.3 41.1
3 63 586 6.4 36.0
4 91 738 12.1 47.7
5 121 749 13.2 97.2
6 154 800 1.6 1.3
7 273 612 8.6 4.3
8 337 611 1.0 0.3
9 427 842 5.6 10.9
10 462 800 1.0 0.5
11 492 1708 1.0 0.2

From H.H.G. Silva, I.G. Silva, “Influence of eggs quiescence period on the
Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae) life cycle at laboratory
conditions”, Rev. Soc. Bras. Med. Trop., 32(4), 1999, pp. 349-355.



Table 2
duction Mathematical modelling – Quescence eggs Mathematical modelling – Transovarial transmission Mathematical modelling – Abiotic effects Conclusion

18 / 43

Experiment Per-capita eclosion Per-capita mortality
number rate (days−1) rate (days−1)

1 0.1067 0.0182
2 0.007593 0.0109
3 0.01092 0.0194
4 0.01640 0.0180
5 0.01762 0.00051
6 0.002 0.1518
7 0.01405 0.3127
8 0.00164 0.5439
9 0.00665 0.05437
10 0.00125 0.2488
11 0.000585 0.2922

Calculation of the per-capita eclosion and mortality rates.
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Stage – i σi (days
−1) µi (days

−1) pi αi (days
−1) εi (days

−1)

1 0.10669 0.01824 5.85 0.2 0.1249
2 0.01164 0.01609 0.72 0.0091 0.02773
3 0.01762 0.0005077 34.7 0.0333 0.01813
4 0.00436 0.26730 0.016 0 0.27166

Estimation of the parameters σi, µi, calculation of the productivity indexes
pi = σi/µi, αi and εi, for i = 1, · · · , 4.
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Temperature σa (days−1) µa (days−1) µf (days−1) φ (eggs× days−1)

16oC 0.02615 0.01397 0.03642 0.69714
28oC 0.11612 0.06001 0.02877 8.29500

The estimated values of the parameters σa, µa, µf and φ for 16 and 28
degree Celsius (oC).
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Seasons Stage 1 Stage 2 Stage 3 Stage 4 Q0

Summer (high) 78.04 1.531 6.4× 10−3 7.1× 10−7 79.57
Summer (low) 0.404 3.933 2.412 1.328 8.076
Winter (high) 5.122 0.101 4.2× 10−4 4.6× 10−8 5.223
Winter (low) 0.027 0.258 0.153 0.087 0.530

The basic offspring number Q0 calculated using the values given in Tables 3
and 4, varying only the transition rates εi for two seasons: Summer (28oC)
and winter (16oC). Two values are used for i = 1, · · · , 4 (days−1): εi = 5.0
(high) and εi = 0.001 (low). The basic offspring number corresponding to a
unique eggs compartment is Q1

0 = 5.327 for winter season.
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■ The capacity of the A. aegypti eggs being stored during hostile abiotic
factors and, then, hatch to larvae in favorable season with increased
fitness – Essential to sustain A. aegypti population to face seasonality.

■ Quiescence eggs having approximately 120 days – When allowed to hatch,
these eggs presented the most producible capacity to originate larvae.

■ Period of 4 months – Approximately the worst abiotic conditions to A.

aegypti to survive.
■ Quiescence of eggs of 4 months joined to the higher capacity of hatching

– An important strategy to A. aegypti population to persist in seasonally
varying environment.
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■ Human population is divided into four compartments: s, i and r, which
are the fractions at time t of, respectively, susceptible, infectious and
recovered persons, with s+ i+ r = 1. The constant total number of the
human population is N .

■ l is the number of larvae (female) at time t, and the number of pupae in
time t is p.

■ The female mosquito population is divided into three compartments: m1

and m2, which are the numbers at time t of, respectively, susceptible and
infectious mosquitoes. The size of mosquito population is m = m1 +m2.
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■ The human mortality rate is µh.
■ The effective larvae production rate is given by qf (1− l/C)φm, where q

and f are the fractions of eggs that are hatching to larva and that will
originate female mosquitoes, respectively, and C is the total (carrying)
capacity of the breeding sites. Larva death is µl. Uninfected and infected
larvae are denoted by l1 and l2. Larvae are transformed in adult
mosquitoes at rate σa. The female mosquitoes mortality rate is µf .

■ Among humans the transmission coefficient (or rate) is βh, depending on
φ. The infected persons are removed to recovered (immune) class by σh,
the recovery rate. With respect to the vector, the susceptible mosquitoes
are infected at a rate βm.

■ The transmission coefficients βh and βm are divided by N .
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■ Modelling transovarian transmission










































d
dt
m1 = σal1 − (βmφi+ µf )m1
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N
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d
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where j is the fraction of eggs with dengue virus from all eggs laid by infected
mosquitoes.
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Trivial equilibrium P 0, or disease free equilibrium (DFE),

P 0 =
(

m̄2 = 0, ı̄ = 0, l̄2 = 0, l̄1 = l∗, m̄1 = m∗, s̄ = 1
)

,

where l∗, p∗ and m∗ are given by







l∗ = C
(

1− 1
Q0

)

m∗ = σa

µf
C
(

1− 1
Q0

)

.

Clearly the mosquito population exists if Q0 > 1, where

Q0 =
σa

σa + µa

qfφ

µf

is the basic offspring number.
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Non-trivial equilibrium P ∗, or endemic equilibrium,

P ∗ =
(

m̄2 = m∗

2, ı̄ = i∗, l̄2 = l∗2, l̄1 = l∗1, m̄1 = m∗

1, s̄ = s∗
)

,

where
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The gross reproduction number Re, which encompasses transovarian
transmission, is

Re = R0 + j,

where the basic reproduction number for horizontal transmission is

R0 =
βhφ

µf

βmφ

σh + µh

m∗

N
.

R0 can be split in two partial contributions Rh
0 and Rm

0 defined by

{

Rh
0 = βhφ

µf

Rm
0 = βmφ

σh+µh

m∗

N
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The combination of s∗, m∗

1 and m∗ results in

s∗
m∗

1

m∗
= χe =

1− j

R0

and the threshold of product of fractions χ−1
e , which encompasses

transovarian transmission, can be written as

1

χe
=

R0

1− j
,

thus χ−1
e = Rh

0 [R
m
0 / (1− j)].
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The case Re = R0 + j = 1.00495 > 1: non-trivial equilibrium.
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The case Re = R0 + j = 1.0099 > 1: non-trivial equilibrium. Displacement of
susceptible mosquitoes.
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■ Gross reproduction number Re = R0 + j.
■ Basic reproduction number R0 – Short term dynamics.
■ Transovarial contribution j – Long term dynamics.
■ Important role when R0 near one.
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■ Human population is divided into four compartments: s, e, i and r, which
are the fractions at time t of, respectively, susceptible, exposed, infectious
and recovered persons, with s+ e+ i+ r = 1. The total number of the
human population is N , which varies with time.

■ l is the number of larvae (female) at time t, and the number of pupae in
time t is p.

■ The female mosquito population is divided into three compartments: m1,
m2 and m3, which are the numbers at time t of, respectively, susceptible,
exposed and infectious mosquitoes. The size of mosquito population is
m = m1 +m2 +m3.
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■ The human natality rate is φh.
■ The effective larvae production rate is given by qf (1− l/C)φm, where q

and f are the fractions of eggs that are hatching to larva and that will
originate female mosquitoes, respectively, and C is the total (carrying)
capacity of the breeding sites. Change rate of larvae to pupae and larva
death are σl and µl. The transformation rate of pupae to adult mosquitoes
and death are σp and µp. The female mosquitoes mortality rate is µf .

■ Among humans the transmission coefficient (or rate) is βh, depending on
φ. The exposed persons are transferred to infectious class by rate γh, and
are removed to recovered (immune) class by σh, the recovery rate. With
respect to the vector, the susceptible mosquitoes are infected at a rate βm.
These exposed mosquitoes are transferred to infectious class at a rate γm.

■ The transmission coefficients βh and βm are divided by N .
■ All mosquito related parameters depend om time (temperature and

precipitation).
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■ Dengue transmission modelling
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(
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No abiotic effects.
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Effects of abiotic factors: temperature and precipitation.
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■ No abiotic factors – epidemics period of 2 years.
■ Abiotic factors – annual epidemics.
■ High incidence in summer and very low incidence in winter.
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■ Eggs surviving winter season.
■ More fitted than fresh eggs.
■ Transovarial transmission – infected eggs.

■ Infected eggs – can dengue virus survive?
■ Temperature and precipitation lead to annual cycle.
■ Quescence egggs, infected eggs and abiotic variation – joint effects are ...
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Thank You
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